已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Key Issues Hindering a Practical Lithium-Metal Anode

法拉第效率 锂(药物) 纳米技术 阳极 金属锂 电解质 电池(电) 材料科学 数码产品 工程物理 化学 电气工程 电极 功率(物理) 物理 工程类 内分泌学 物理化学 医学 量子力学
作者
Chengcheng Fang,Xuefeng Wang,Ying Shirley Meng
出处
期刊:Trends in chemistry [Elsevier]
卷期号:1 (2): 152-158 被引量:331
标识
DOI:10.1016/j.trechm.2019.02.015
摘要

Advanced liquid electrolytes can achieve dense Li deposition with a Coulombic efficiency (CE) of approximately 99%. New characterization tools, including cryogenic electron microscopies and quantitative chemical analytical tools, have enhanced the current understanding of Li failure mechanisms. Quantification of inactive Li reveals that the underlying cause of low CE in Li-metal anodes is the large amount of unreacted metallic Li. The sluggish progress of battery technologies has drastically hindered the rapid development of electric vehicles and next-generation portable electronics. The lithium (Li) metal anode is critical to break the energy-density bottleneck of current Li-ion chemistry. After being intensively studied in recent years, the Li-metal field has developed new understanding and made unprecedented progress in preventing Li-dendrite growth and improving Coulombic efficiency, especially through development of advanced electrolytes and novel analytical tools. In this Opinion, we revisit the controversial issues surrounding Li metal as an anode based upon recent advances, revealing the underlying cause of Li-metal failure and the true role of ‘solid electrolyte interphase’ in Li-metal anodes. Finally, we propose future directions that must be taken in order for Li-metal batteries to become commercially viable. The sluggish progress of battery technologies has drastically hindered the rapid development of electric vehicles and next-generation portable electronics. The lithium (Li) metal anode is critical to break the energy-density bottleneck of current Li-ion chemistry. After being intensively studied in recent years, the Li-metal field has developed new understanding and made unprecedented progress in preventing Li-dendrite growth and improving Coulombic efficiency, especially through development of advanced electrolytes and novel analytical tools. In this Opinion, we revisit the controversial issues surrounding Li metal as an anode based upon recent advances, revealing the underlying cause of Li-metal failure and the true role of ‘solid electrolyte interphase’ in Li-metal anodes. Finally, we propose future directions that must be taken in order for Li-metal batteries to become commercially viable. also known as Faraday efficiency; it describes the efficiency with which charge is transferred in a system facilitating an electrochemical reaction. In a closed secondary battery system, the CE directly reflects the battery cyclability. an electron microscopy technique applied on samples cooled down to cryogenic temperatures. This technique significantly reduces the electron beam damage on fragile samples and has been widely adopted in structure biology field to obtain atomic-resolution images. Recently, this technique has been introduced to the battery field and serves as a powerful tool to investigate the nature of extremely beam–sensitive lithium metal and SEI. compounds with layered structures that can host the reversible insertion of molecules or ions into the material. Common intercalation electrode compounds include graphite (anode), TiS2 (cathode), layered oxides (cathode; e.g., LiCoO2 and LiNi0.8Mn0.1Co0.1O2). the interface between the electrode and electrolyte. It forms from the (electro)chemical reaction between the electrode and electrolyte, and the electrochemical decomposition of electrolyte, ensuring the kinetic stabilization of electrode–electrolyte interfaces. It remains conductive to ions but insulates electrons. a new analytical method used to quantify trace amount of metals. It is a combination of protic solvent titration and quantification of H2 amount by gas chromatography. The amount of metals can be calculated from the H2 amount.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
巧克力手印完成签到,获得积分10
4秒前
4秒前
4秒前
差不多就行的小蓝完成签到,获得积分10
5秒前
Zevin发布了新的文献求助10
7秒前
奋斗小青年完成签到 ,获得积分10
8秒前
闾丘惜萱完成签到,获得积分10
9秒前
10秒前
七彩琉璃公主完成签到,获得积分10
14秒前
22秒前
脑洞疼应助Xuezhuoxin采纳,获得10
24秒前
29秒前
30秒前
时尚听筠完成签到,获得积分10
30秒前
Zevin完成签到,获得积分10
31秒前
小树苗完成签到,获得积分10
31秒前
大模型应助科研通管家采纳,获得10
32秒前
无花果应助科研通管家采纳,获得10
32秒前
酷波er应助科研通管家采纳,获得10
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
SciGPT应助科研通管家采纳,获得50
32秒前
Ava应助科研通管家采纳,获得10
32秒前
江小姜发布了新的文献求助10
33秒前
zzz发布了新的文献求助10
33秒前
33秒前
36秒前
阳光翩跹发布了新的文献求助10
37秒前
mumu发布了新的文献求助10
37秒前
踏实的傲白完成签到 ,获得积分10
39秒前
江小姜完成签到,获得积分20
42秒前
Hulda发布了新的文献求助10
42秒前
Akim应助mumu采纳,获得10
43秒前
48秒前
49秒前
50秒前
Hulda完成签到 ,获得积分10
53秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
The three stars each : the Astrolabes and related texts 550
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2400109
求助须知:如何正确求助?哪些是违规求助? 2100825
关于积分的说明 5296461
捐赠科研通 1828480
什么是DOI,文献DOI怎么找? 911334
版权声明 560198
科研通“疑难数据库(出版商)”最低求助积分说明 487125