Key Issues Hindering a Practical Lithium-Metal Anode

法拉第效率 锂(药物) 纳米技术 阳极 金属锂 电解质 电池(电) 材料科学 数码产品 工程物理 化学 电气工程 电极 功率(物理) 物理 工程类 内分泌学 物理化学 医学 量子力学
作者
Chengcheng Fang,Xuefeng Wang,Ying Shirley Meng
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (2): 152-158 被引量:389
标识
DOI:10.1016/j.trechm.2019.02.015
摘要

Advanced liquid electrolytes can achieve dense Li deposition with a Coulombic efficiency (CE) of approximately 99%. New characterization tools, including cryogenic electron microscopies and quantitative chemical analytical tools, have enhanced the current understanding of Li failure mechanisms. Quantification of inactive Li reveals that the underlying cause of low CE in Li-metal anodes is the large amount of unreacted metallic Li. The sluggish progress of battery technologies has drastically hindered the rapid development of electric vehicles and next-generation portable electronics. The lithium (Li) metal anode is critical to break the energy-density bottleneck of current Li-ion chemistry. After being intensively studied in recent years, the Li-metal field has developed new understanding and made unprecedented progress in preventing Li-dendrite growth and improving Coulombic efficiency, especially through development of advanced electrolytes and novel analytical tools. In this Opinion, we revisit the controversial issues surrounding Li metal as an anode based upon recent advances, revealing the underlying cause of Li-metal failure and the true role of ‘solid electrolyte interphase’ in Li-metal anodes. Finally, we propose future directions that must be taken in order for Li-metal batteries to become commercially viable. The sluggish progress of battery technologies has drastically hindered the rapid development of electric vehicles and next-generation portable electronics. The lithium (Li) metal anode is critical to break the energy-density bottleneck of current Li-ion chemistry. After being intensively studied in recent years, the Li-metal field has developed new understanding and made unprecedented progress in preventing Li-dendrite growth and improving Coulombic efficiency, especially through development of advanced electrolytes and novel analytical tools. In this Opinion, we revisit the controversial issues surrounding Li metal as an anode based upon recent advances, revealing the underlying cause of Li-metal failure and the true role of ‘solid electrolyte interphase’ in Li-metal anodes. Finally, we propose future directions that must be taken in order for Li-metal batteries to become commercially viable. also known as Faraday efficiency; it describes the efficiency with which charge is transferred in a system facilitating an electrochemical reaction. In a closed secondary battery system, the CE directly reflects the battery cyclability. an electron microscopy technique applied on samples cooled down to cryogenic temperatures. This technique significantly reduces the electron beam damage on fragile samples and has been widely adopted in structure biology field to obtain atomic-resolution images. Recently, this technique has been introduced to the battery field and serves as a powerful tool to investigate the nature of extremely beam–sensitive lithium metal and SEI. compounds with layered structures that can host the reversible insertion of molecules or ions into the material. Common intercalation electrode compounds include graphite (anode), TiS2 (cathode), layered oxides (cathode; e.g., LiCoO2 and LiNi0.8Mn0.1Co0.1O2). the interface between the electrode and electrolyte. It forms from the (electro)chemical reaction between the electrode and electrolyte, and the electrochemical decomposition of electrolyte, ensuring the kinetic stabilization of electrode–electrolyte interfaces. It remains conductive to ions but insulates electrons. a new analytical method used to quantify trace amount of metals. It is a combination of protic solvent titration and quantification of H2 amount by gas chromatography. The amount of metals can be calculated from the H2 amount.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达语柔发布了新的文献求助10
1秒前
Alias1234发布了新的文献求助10
2秒前
2秒前
科研通AI5应助望北采纳,获得10
4秒前
xun完成签到,获得积分20
4秒前
哈哈哈完成签到 ,获得积分10
6秒前
jueshadi发布了新的文献求助10
8秒前
所所应助xun采纳,获得10
9秒前
adamhe发布了新的文献求助10
10秒前
niekyang完成签到 ,获得积分10
12秒前
keyandog发布了新的文献求助10
13秒前
科研通AI5应助caicai采纳,获得10
13秒前
领导范儿应助积极的夏天采纳,获得10
14秒前
丰富怜烟完成签到,获得积分10
14秒前
称心的若山完成签到 ,获得积分20
14秒前
魏千军关注了科研通微信公众号
15秒前
开朗翠梅完成签到,获得积分10
16秒前
森花完成签到,获得积分10
17秒前
zhang完成签到,获得积分10
17秒前
七七发布了新的文献求助10
18秒前
xxxx发布了新的文献求助10
18秒前
hc发布了新的文献求助10
18秒前
19秒前
小马甲应助YCI采纳,获得30
19秒前
wdlc发布了新的文献求助20
19秒前
panda发布了新的文献求助10
21秒前
Orange应助迷路的鞅采纳,获得10
21秒前
充电宝应助科研兄采纳,获得10
23秒前
皮卡丘发布了新的文献求助10
23秒前
23秒前
英俊的铭应助xxxx采纳,获得10
24秒前
LSDTC完成签到,获得积分20
24秒前
周游世界完成签到,获得积分10
24秒前
24秒前
所所应助鲁迪采纳,获得10
25秒前
可爱奇异果完成签到 ,获得积分10
26秒前
所所应助mbxjsy采纳,获得10
26秒前
科研通AI5应助adamhe采纳,获得10
26秒前
27秒前
任性的冷梅完成签到,获得积分10
27秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829952
求助须知:如何正确求助?哪些是违规求助? 3372514
关于积分的说明 10472969
捐赠科研通 3092095
什么是DOI,文献DOI怎么找? 1701755
邀请新用户注册赠送积分活动 818609
科研通“疑难数据库(出版商)”最低求助积分说明 770986