A State-of-the-Art Survey on Deep Learning Theory and Architectures

深度学习 人工智能 计算机科学 机器学习 深信不疑网络 强化学习 卷积神经网络 循环神经网络 水准点(测量) 人工神经网络 领域(数学) 无监督学习 数学 大地测量学 纯数学 地理
作者
Md Zahangir Alom,Tarek M. Taha,Chris Yakopcic,Stefan Westberg,Paheding Sidike,Mst Shamima Nasrin,Mahmudul Hasan,Brian C. Van Essen,Abdul Ahad S. Awwal,Vijayan K. Asari
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:8 (3): 292-292 被引量:1313
标识
DOI:10.3390/electronics8030292
摘要

In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language processing, cybersecurity, and many others. This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent developments, such as advanced variant DL techniques based on these DL approaches. This work considers most of the papers published after 2012 from when the history of deep learning began. Furthermore, DL approaches that have been explored and evaluated in different application domains are also included in this survey. We also included recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys that have been published on DL using neural networks and a survey on Reinforcement Learning (RL). However, those papers have not discussed individual advanced techniques for training large-scale deep learning models and the recently developed method of generative models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助30
刚刚
终生科研徒刑完成签到 ,获得积分10
刚刚
刚刚
韩涵发布了新的文献求助10
刚刚
NexusExplorer应助长亭采纳,获得20
刚刚
刚刚
Cherry发布了新的文献求助10
刚刚
小科比发布了新的文献求助10
1秒前
愉快的哈密瓜完成签到,获得积分10
1秒前
1秒前
lancerimpp完成签到,获得积分10
2秒前
jd发布了新的文献求助10
2秒前
七月不看海完成签到,获得积分10
2秒前
3秒前
3秒前
dingz完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
6秒前
6秒前
6秒前
7秒前
环秋发布了新的文献求助10
7秒前
梓辰完成签到,获得积分10
7秒前
敏感的靳发布了新的文献求助10
7秒前
zhouzhou完成签到,获得积分10
8秒前
机灵的鸣凤完成签到,获得积分10
8秒前
甜美坤完成签到 ,获得积分10
9秒前
9秒前
zzbbk发布了新的文献求助10
9秒前
Lucas应助1111采纳,获得10
9秒前
JUYIN完成签到,获得积分10
10秒前
无花果应助lc采纳,获得10
10秒前
coco发布了新的文献求助10
11秒前
安静的幻竹完成签到,获得积分10
11秒前
conanyangqun发布了新的文献求助10
11秒前
11秒前
why发布了新的文献求助10
11秒前
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841327
求助须知:如何正确求助?哪些是违规求助? 3383394
关于积分的说明 10529546
捐赠科研通 3103500
什么是DOI,文献DOI怎么找? 1709307
邀请新用户注册赠送积分活动 823049
科研通“疑难数据库(出版商)”最低求助积分说明 773806