Copper-triggered delocalization of bismuth p-orbital favours high-throughput CO2 electroreduction

催化作用 离域电子 材料科学 电化学 氧化还原 催化循环 纳米技术 化学 电极 组合化学 化学物理 无机化学 物理化学 有机化学 冶金
作者
Bowen Liu,Ying Xie,Xiaolei Wang,Chang Gao,Zhimin Chen,Shaolin Mu,Huiyuan Meng,Zichen Song,Shichao Du,Zhiyu Ren
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:301: 120781-120781 被引量:45
标识
DOI:10.1016/j.apcatb.2021.120781
摘要

At present, formic acid with the high energy value is the promising product generated by the large-scale renewable electricity-driven CO2 conversion, yet challenges remain in the high-throughput and low-energy production accompanied by the considerable selectivity. Herein, in view of the contribution of electronic modulation to electrocatalytic CO2 reduction reaction (CO2RR) activity of catalysts, the thin BiCu-bimetallic film was designed and built on Cu foam (BiCu/CF) by coupling a facile hydrothermal reaction and an immediate electrochemical transformation. The theoretical evidences demonstrate that Bi p-orbital delocalization triggered by the close-contact metal Cu optimizes reaction pathway of CO2RR, and also favours the orbital hybridization between Bi atom and *OCHO intermediate to form more anti-bonding orbitals, resulting in stabilizing *OCHO intermediate and lowering the thermodynamic barrier of CO2RR. Meanwhile, the electron transferred from catalyst-sites to reaction species also accelerates during CO2RR. Integrating the improved intrinsic activity of Bi catalytic-sites and the superiority of Cu foam in exposing more active sites and the mechanical strength, the BiCu/CF electrode with optimal thickness can acquire satisfactory indicators for industrial application, yielding a record formate current density of 856 mA cm−2, higher than 85% Faradic efficiency, along with a remarkable stability, which outperforms state-of-the-art Bi-based catalysts. This study offers potential avenues of engineering orbital delocalization to rationally construct advanced CO2RR electrodes for the carbon-neutral cycle and utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hkh发布了新的文献求助10
刚刚
科研通AI5应助地表飞猪采纳,获得10
1秒前
冷水完成签到,获得积分10
1秒前
2秒前
yanjie完成签到,获得积分20
3秒前
照九州完成签到,获得积分10
3秒前
调皮帆布鞋完成签到,获得积分10
4秒前
健壮的秋寒完成签到,获得积分10
4秒前
Charlotte完成签到,获得积分10
4秒前
子系郎完成签到,获得积分10
4秒前
好运常在完成签到,获得积分10
5秒前
Swilder完成签到 ,获得积分10
5秒前
FashionBoy应助jilgy采纳,获得10
6秒前
高挑的听南完成签到,获得积分10
6秒前
linxi完成签到,获得积分10
7秒前
努恩完成签到,获得积分10
7秒前
管理想完成签到,获得积分20
8秒前
8秒前
xhsz1111完成签到 ,获得积分10
8秒前
学术大亨完成签到,获得积分10
9秒前
单薄树叶完成签到,获得积分10
10秒前
xyawl425完成签到,获得积分10
10秒前
10秒前
Silence完成签到,获得积分0
10秒前
圆圆完成签到,获得积分10
11秒前
yifei完成签到,获得积分10
11秒前
hanhan完成签到,获得积分10
11秒前
lan兰发布了新的文献求助20
11秒前
一朵小鲜花儿完成签到,获得积分10
11秒前
111完成签到,获得积分10
13秒前
潘子完成签到,获得积分10
13秒前
李兴完成签到 ,获得积分10
13秒前
jackycas完成签到,获得积分10
13秒前
学习猴完成签到,获得积分10
14秒前
14秒前
直率的沛槐关注了科研通微信公众号
14秒前
AHR发布了新的文献求助10
14秒前
来玩的完成签到,获得积分10
14秒前
yue完成签到,获得积分10
15秒前
lfg完成签到,获得积分20
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642