Serum metabolite signatures of epithelial ovarian cancer based on targeted metabolomics

谷氨酰胺 代谢组学 代谢物 天冬酰胺 氨基酸 谷氨酸 丙氨酸 蛋氨酸 乙醇酸 天冬氨酸 代谢组 生物化学 亮氨酸 化学 生物 医学 生物信息学 乳酸 遗传学 细菌
作者
Xinyang Wang,Xinshu Zhao,Jinhui Zhao,Tongshu Yang,Fengmin Zhang,Liyan Liu
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:518: 59-69 被引量:24
标识
DOI:10.1016/j.cca.2021.03.012
摘要

Abstract Background Epithelial ovarian cancer (EOC) is a common gynecological cancer with high mortality rates. The main objective of this study was to investigate the serum amino acid and organic acid profiles to distinguish key metabolites for screening EOC patients. Methods In total, 39 patients with EOC and 31 healthy controls were selected as the training set. Serum amino acid and organic acid profiles were determined using the targeted metabolomics approach. Metabolite profiles were processed via multivariate analysis to identify potential metabolites and construct a metabolic network. Finally, a test dataset derived from 29 patients and 28 healthy controls was constructed to validate the potential metabolites. Results Distinct amino acid and organic acid profiles were obtained between EOC and healthy control groups. Methionine, glutamine, asparagine, glutamic acid and glycolic acid were identified as potential metabolites to distinguish EOC from control samples. The areas under the curve for methionine, glutamine, asparagine, glutamic acid and glycolic acid were 0.775, 0 778, 0.955, 0.874 and 0.897, respectively, in the validation study. Metabolic network analysis of the training set indicated key roles of alanine, aspartate and glutamate metabolism as well as D-glutamine and D-glutamate metabolism in the pathogenesis of EOC. Conclusions Amino acid and organic acid profiles may serve as potential screening tools for EOC. Data from this study provide useful information to bridge gaps in the understanding of the amino acid and organic acid alterations associated with epithelial ovarian cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强壮的美女完成签到,获得积分10
1秒前
陈花蕾完成签到 ,获得积分10
2秒前
小桃耶完成签到,获得积分10
3秒前
4秒前
4秒前
Reo发布了新的文献求助10
5秒前
揚Young完成签到,获得积分10
5秒前
orixero应助zzy采纳,获得10
5秒前
卡尔发布了新的文献求助10
6秒前
充电宝应助freshfish1017采纳,获得10
7秒前
无奈的萍发布了新的文献求助10
9秒前
ddli发布了新的文献求助10
9秒前
三跳完成签到 ,获得积分10
10秒前
凉风送信完成签到,获得积分10
11秒前
Lucas应助Hana采纳,获得10
12秒前
cyia-应助苗条的酸奶采纳,获得20
12秒前
蒋不惜完成签到,获得积分10
13秒前
Elhsin_Karte完成签到,获得积分20
14秒前
slj完成签到,获得积分10
14秒前
16秒前
17秒前
思源应助isfj采纳,获得10
17秒前
在水一方应助河堤采纳,获得10
18秒前
fang完成签到,获得积分10
18秒前
NexusExplorer应助glittery采纳,获得10
18秒前
葉鳳怡完成签到 ,获得积分10
18秒前
19秒前
automan完成签到,获得积分10
21秒前
fang发布了新的文献求助10
22秒前
22秒前
young发布了新的文献求助10
23秒前
打打应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得30
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
Jeff完成签到,获得积分10
26秒前
27秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783262
求助须知:如何正确求助?哪些是违规求助? 3328579
关于积分的说明 10237185
捐赠科研通 3043691
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130