Oxygen vacancy boosting peroxymonosulfate activation over nanosheets assembled flower-like CoMoO4 for contaminant removal: Performance and activity enhancement mechanisms

催化作用 化学 降级(电信) 氧气 吸附 猝灭(荧光) 化学工程 光化学 有机化学 计算机科学 量子力学 电信 荧光 物理 工程类
作者
Jincheng Mu,Jinming Feng,Xinyang Wang,Baojun Liu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:459: 141537-141537 被引量:25
标识
DOI:10.1016/j.cej.2023.141537
摘要

Cobalt-based oxides are promising candidates for heterogeneous activation of peroxymonosulfate-based (PMS) advanced oxidation processes towards contaminants degradation, hence improving their catalytic performance is desirable requirement. Herein, an oxygen vacancy-rich flower-like CoMoO4 catalyst (CoMoO4-VO) assembled with nanosheets was successfully synthesized and applied for PMS activation to eliminate emerging contaminants. The CoMoO4-VO catalyst exhibits superior organic pollutants (e.g. sulfamethoxazole, SMX) removal performance with an apparent reaction rate of 1.29 min−1, which is much higher than that of the original CoMoO4 catalyst (0.30 min−1). Additionally, the catalyst also shows remarkable contaminants conversion in real river water, and even achieves more than 90 % of SMX degradation efficiency under a continuous flow reaction condition with a hydraulic retention time of approximately 2 min. The characterization and density functional theory (DFT) calculation results indicate that much electron accumulates around the formed oxygen vacancy on the surface of catalyst and transfers towards substrates. Meanwhile, the introduction of more oxygen vacancies could boost the adsorption of PMS as well as SMX, and the electron-donation capacity of catalyst, thus improving the generation of reactive oxygen species and the subsequent contaminate elimination. Radical quenching and capture experiments demonstrate that the enhanced degradation performance of CoMoO4-VO catalyst is attributed to the boosted radical pathway, especially for SO4− species, while scarcely contributed from the non-radical 1O2 species. This work provides an effective catalyst for contaminant elimination through PMS activation and deeply reveals the defect engineering-induced activity enhancement mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Young应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
1秒前
ytzhang0587应助科研通管家采纳,获得20
1秒前
Orange应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
且慢应助cccat采纳,获得50
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
xinluli完成签到,获得积分10
2秒前
共享精神应助合适的画板采纳,获得10
2秒前
2秒前
2秒前
2秒前
忍冬发布了新的文献求助10
2秒前
外向的伯云完成签到,获得积分20
3秒前
zf发布了新的文献求助10
3秒前
3秒前
科研通AI6应助风中泰坦采纳,获得10
4秒前
My发布了新的文献求助10
4秒前
科研通AI6应助五百里采纳,获得10
4秒前
mgg发布了新的文献求助10
4秒前
田様应助GWF采纳,获得10
5秒前
5秒前
慕青应助王木木采纳,获得10
5秒前
dong发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905