Smart and Selective Gas Sensor System Empowered With Machine Learning Over IoT Platform

计算机科学 无线传感器网络 嵌入式系统 云计算 微控制器 实时计算 互联网 无线 移植 Android(操作系统) 蓝牙 计算机网络 操作系统 软件
作者
Snehanjan Acharyya,Abhishek Ghosh,Sudip Nag,S. B. Majumder,Prasanta Kumar Guha
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4218-4226 被引量:12
标识
DOI:10.1109/jiot.2023.3298633
摘要

Simple, accurate, portable, and selective gas sensors with autonomous, remote, and real-time access have become a requisite in various fields of applications. In this paper, we report the development of a stand-alone and selective gas sensor system incorporating a single resistive sensor with wireless monitoring and internet connectivity. The sensor is fabricated in-house with platinum decorated tin-oxide hollow-spheres as the sensing material, which exhibits a prominent response towards the tested volatile organic compounds (VOCs) at different concentrations. The intelligence in terms of accurate identification of VOCs and their concentration is attained by employing a machine learning tool based on deep neural network. The applied model displays an average accuracy of 96.43% with a fast prediction speed of 310ls, allowing a real-time recognition capability. The wireless connectivity is established utilizing a low-power microcontroller board and a Bluetooth module. The real-time data is made available for the users over an Android-based mobile application and a webpage while utilizing cloud services through the internet. The implemented system is successfully experimented with and validated under different test conditions that verify the whole platform. Further, the sensor system can be potentially applied to a remote application without needing any manual involvement. The demonstrated work with an internet-of-things (IoT) paradigm strengthens the next-generation gas sensing technology for developing smart, selective, and real-time gas sensor systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
站走跑完成签到 ,获得积分10
2秒前
孤傲的静脉完成签到,获得积分10
3秒前
3秒前
Bennyz完成签到,获得积分10
3秒前
5秒前
芳芳完成签到,获得积分10
6秒前
tym完成签到,获得积分10
6秒前
George完成签到,获得积分10
7秒前
7秒前
坚定的又莲完成签到 ,获得积分10
7秒前
EvanBee完成签到,获得积分10
8秒前
8秒前
加减乘除完成签到,获得积分10
8秒前
8秒前
幽默尔蓝发布了新的文献求助10
8秒前
plumcute完成签到,获得积分10
9秒前
慕青应助小高采纳,获得10
9秒前
橘子的哈哈怪完成签到,获得积分10
9秒前
金甲狮王完成签到,获得积分10
10秒前
ldzjiao完成签到 ,获得积分10
10秒前
XMFM完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
Vicki完成签到,获得积分10
14秒前
123完成签到 ,获得积分10
14秒前
幽默尔蓝完成签到,获得积分10
14秒前
不想长大完成签到 ,获得积分10
15秒前
camillelizhaohe完成签到,获得积分10
15秒前
凯卮完成签到,获得积分10
16秒前
小波同学。完成签到,获得积分10
16秒前
洁净之柔完成签到,获得积分10
17秒前
666完成签到,获得积分10
18秒前
得鹿梦鱼完成签到,获得积分10
18秒前
teargasxq完成签到,获得积分20
18秒前
zr完成签到,获得积分10
18秒前
fjhsg25发布了新的文献求助10
18秒前
左右兮完成签到,获得积分10
19秒前
ttt完成签到,获得积分10
19秒前
虚心的仙人掌完成签到,获得积分0
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804299
求助须知:如何正确求助?哪些是违规求助? 3349099
关于积分的说明 10341704
捐赠科研通 3065225
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808587
科研通“疑难数据库(出版商)”最低求助积分说明 764620