Physics-Informed Residual Network (PIResNet) for rolling element bearing fault diagnostics

方位(导航) 残余物 断层(地质) 情态动词 深度学习 判别式 计算机科学 财产(哲学) 人工智能 工程类 机器学习 算法 地质学 哲学 地震学 认识论 化学 高分子化学
作者
Qing Ni,Jinchen Ji,Benjamin Halkon,Ke Feng,Asoke K. Nandi
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:200: 110544-110544 被引量:103
标识
DOI:10.1016/j.ymssp.2023.110544
摘要

Various deep learning methodologies have recently been developed for machine condition monitoring recently, and they have achieved impressive success in bearing fault diagnostics. Despite the capability of effectively diagnosing bearing faults, most deep learning methods are tremendously data-dependent, which is not always available in industrial applications. In practical engineering, bearings are usually installed in rotating machinery where speed and load variations frequently occur, resulting in difficulty in collecting large training datasets under all operating conditions. Additionally, physical information is usually ignored in most deep learning algorithms, which sometimes leads to the generated results of low compliance with the physical law. To tackle these challenges, a novel Physics-Informed Residual Network (PIResNet) is proposed for learning the underlying physics that is embedded in both training and testing data, thus providing a physical consistent solution for imperfect data. In the proposed method, a physical modal-property-dominant-generated layer is adopted at first to generate the modal-property-dominant feature. Then, a domain-conversion layer is constructed to enable the feasibility of extracting the discriminative bearing fault features under varying operating speed conditions. Lastly, a parallel bi-channel residual learning architecture that can automatically extract the bearing fault signatures is meticulously established to incorporate the bearing fault characteristics. Experimental datasets under variable operating speeds and loads, and time-varying operating speeds are utilized to demonstrate the superiority of the PIResNet under non-stationary operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铜锣湾小研仔应助浅池星采纳,获得10
刚刚
我是老大应助HJJHJH采纳,获得10
1秒前
2秒前
to高坚果发布了新的文献求助10
3秒前
4秒前
yxlsunny发布了新的文献求助10
4秒前
zl完成签到,获得积分10
6秒前
啊懂完成签到,获得积分10
8秒前
9秒前
Ava应助雨醉东风采纳,获得10
9秒前
张萌发布了新的文献求助10
9秒前
生生完成签到 ,获得积分10
9秒前
12秒前
毛毛发布了新的文献求助10
15秒前
BisonHamster完成签到,获得积分10
16秒前
allen发布了新的文献求助10
16秒前
to高坚果完成签到,获得积分10
16秒前
19秒前
21秒前
自信筮发布了新的文献求助10
24秒前
24秒前
简单完成签到 ,获得积分10
24秒前
bkagyin应助梓mua采纳,获得10
26秒前
31秒前
33秒前
34秒前
lesyeuxdexx完成签到 ,获得积分10
37秒前
Hiy完成签到,获得积分20
37秒前
梓mua发布了新的文献求助10
38秒前
权归尘发布了新的文献求助20
39秒前
阿QQ发布了新的文献求助30
39秒前
魔幻的寻雪完成签到,获得积分10
43秒前
自信筮完成签到,获得积分10
44秒前
细腻的沂完成签到,获得积分20
47秒前
Rgly完成签到 ,获得积分10
48秒前
49秒前
49秒前
勤恳的糖豆完成签到,获得积分10
51秒前
54秒前
言辞完成签到,获得积分10
56秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843815
求助须知:如何正确求助?哪些是违规求助? 3386203
关于积分的说明 10544092
捐赠科研通 3106883
什么是DOI,文献DOI怎么找? 1711245
邀请新用户注册赠送积分活动 824031
科研通“疑难数据库(出版商)”最低求助积分说明 774409