Atrial Fibrillation Pattern Recognition using Features of Second Order Dynamic System

支持向量机 心房颤动 模式识别(心理学) 计算机科学 人工智能 正常窦性心律 人工神经网络 机器学习 语音识别 医学 心脏病学
作者
Lee Wei Qi,Nurul Ashikin Abdul-Kadir,Wei Wei Heng,Mohd Afzan Othman,Norlaili Mat Safri,Abdul-Mutalib Embong
标识
DOI:10.1109/icicyta57421.2022.10038172
摘要

According to World Health Organization (WHO), an estimated 17.9 million people died from cardiovascular diseases (CVD) in 2019, representing 32 % of all global deaths. Of these deaths, 85 % were due to heart attack and stroke. The occurrence and prevalence of atrial fibrillation (AF) is growing worldwide. Limited tools are available to evaluate clinical outcomes and response to thrombolysis in stroke patients with AF. Therefore, this study analysed the ECG features of AF and the normal sinus rhythm (NSR) signals for AF recognition. The first objective is to extract AF features using second-order dynamic system (SODS) algorithm. The following objective is to investigate the effect of windowing length towards AF classification. Next, to compare the two-pattern recognition machine learning support vector machine (SVM) and artificial neural network (ANN) on the accuracy, specificity, and sensitivity of AF classification. In this study, the Physiobank database, included MITBIH Atrial Fibrillation Dataset and MITBIH Normal Sinus Rhythm Dataset were used. For signal pre-processing, butterworth filter are used to diminish the muscle noise and the features signals were extracted. Multiple episodes of the windowing size of 2s, 4s, 6s, 8s and 10s were included in this design to evaluate the appropriate windowing size for AF recognition. The pattern recognition machine learning of SVM algorithm has higher accuracy compared to ANN, which are 100 % with 4s windowing size. In conclusion, the 4s windowing size having the highest detection rate in AF classification system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷清之完成签到 ,获得积分10
刚刚
Aubrey完成签到,获得积分10
2秒前
2秒前
李爱国应助颜靖仇采纳,获得10
2秒前
SYLH应助颜靖仇采纳,获得10
2秒前
SYLH应助颜靖仇采纳,获得10
2秒前
小海应助颜靖仇采纳,获得10
2秒前
3秒前
3秒前
3秒前
8464368发布了新的文献求助10
3秒前
ming发布了新的文献求助10
3秒前
研友_VZG7GZ应助jocelynnna采纳,获得10
3秒前
香蕉招牌发布了新的文献求助10
3秒前
代代发布了新的文献求助10
4秒前
代号鸢尾完成签到,获得积分10
4秒前
吱吱的孜孜完成签到,获得积分10
4秒前
4秒前
田様应助ny960采纳,获得10
4秒前
5秒前
5秒前
虫虫发布了新的文献求助10
5秒前
yinhe028发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI5应助不安的伯云采纳,获得10
6秒前
田様应助scc采纳,获得10
6秒前
开心的向雁完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
夕荀发布了新的文献求助10
8秒前
xfyxxh完成签到,获得积分10
8秒前
SYLH应助颜靖仇采纳,获得10
8秒前
tramp应助颜靖仇采纳,获得10
8秒前
科研通AI2S应助颜靖仇采纳,获得10
9秒前
爆米花应助颜靖仇采纳,获得10
9秒前
Orange应助颜靖仇采纳,获得10
9秒前
善学以致用应助颜靖仇采纳,获得10
9秒前
SYLH应助颜靖仇采纳,获得10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747