亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PsfDeconNet: High-Resolution Seismic Imaging Using Point-Spread Function Deconvolution With Generative Adversarial Networks

反褶积 点扩散函数 计算机科学 图像分辨率 图像复原 地震偏移 地质学 图像(数学) 人工智能 计算机视觉 算法 图像处理 地震学
作者
Jiaxing Sun,Jidong Yang,Jianping Huang,Chong Zhao,Youcai Yu,Xuanhao Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-9 被引量:6
标识
DOI:10.1109/tgrs.2024.3362998
摘要

Least-squares migration (LSM) aims to seek the best-fit solution for subsurface reflectivity with high image resolution and balanced amplitudes by minimizing the mismatching between synthetic and observed seismic data. It can be implemented either in data domain or in image domain. Data-domain LSM iteratively updates reflectivity using the gradient-based algorithms. However, it requires expensive computation cost to converge to a good solution, which is still challenging for large-scale datasets under current computational capacity. Point spread function (PSF) deconvolution is an efficient and accurate image-domain LSM approach to reduce migration artifacts caused by the limited aperture and the finite frequency wavelet and improve image resolution. But seismic velocity models have millions of grid points, which makes it prohibitively expensive to directly compute the PSF and its deconvolution operator. To obtain high-resolution images and reduce computing cost, we develop a deep-learning-based method to directly approximate the deconvolution operator of each separated PSF. First, we calculate migrated image and PSFs using one pass of seismic modeling and traditional adjoint migration. Next, we train a conditional generative adversarial networks (cGANs) by using the migrated images, PSFs and migration velocity as the input and the true reflectivity as the labeled data. At last, the trained network is applied to the migrated images, PSFs and migration velocity of test datasets to predict the reflectivity model. With the well-trained cGANs, we can predict high-quality LSM images efficiently and save considerable computational cost. Numerical examples for synthetic models and field data demonstrate that the proposed method can accurately predict PSF deconvolution operators and provide high-quality deblurred LSM images with significantly reduced computational and memory costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朝槿完成签到,获得积分10
1秒前
朝槿发布了新的文献求助10
5秒前
小白果果发布了新的文献求助10
6秒前
6秒前
Apple1234发布了新的文献求助30
9秒前
李健的小迷弟应助Emma采纳,获得10
11秒前
Moo5_zzZ发布了新的文献求助30
11秒前
12秒前
13秒前
落落洛栖完成签到 ,获得积分10
13秒前
彭于晏应助豆kl采纳,获得10
14秒前
传奇3应助小白果果采纳,获得10
15秒前
16秒前
dadadsad完成签到,获得积分10
16秒前
ding应助落寞的藏今采纳,获得10
16秒前
香蕉觅云应助Apple1234采纳,获得10
19秒前
20秒前
fourcewill完成签到,获得积分20
23秒前
28秒前
超人爱吃菠菜完成签到,获得积分10
29秒前
29秒前
31秒前
天海发布了新的文献求助10
31秒前
DDMouse发布了新的文献求助10
33秒前
34秒前
34秒前
任性凤凰发布了新的文献求助10
37秒前
Lliu完成签到,获得积分10
38秒前
Moo5_zzZ发布了新的文献求助30
38秒前
tranphucthinh发布了新的文献求助30
40秒前
浮游应助yzizz采纳,获得10
40秒前
41秒前
zhou完成签到,获得积分10
44秒前
天海完成签到,获得积分10
45秒前
慕青应助酷酷的藏鸟采纳,获得10
46秒前
tranphucthinh完成签到,获得积分10
48秒前
布丁完成签到 ,获得积分10
51秒前
DDMouse完成签到,获得积分10
55秒前
丹牛完成签到,获得积分10
55秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364