An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning

材料科学 沉积(地质) 强化学习 过程(计算) 钢筋 能量(信号处理) 工艺优化 工艺工程 冶金 机械工程 复合材料 人工智能 化学工程 计算机科学 工程类 古生物学 统计 数学 沉积物 生物 操作系统
作者
Shuai Shi,Xuewen Liu,Zhongan Wang,Hai Chang,Yingna Wu,Rui Yang,Zirong Zhai
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:120: 1130-1140 被引量:15
标识
DOI:10.1016/j.jmapro.2024.05.001
摘要

Directed Energy Deposition (DED) is crucial in the ongoing industrial revolution, providing a unique ability to fabricate high-quality components with complex shapes. However, the determination of key process parameters, such as scan sequence, laser power, and scanning speed, often relies on offline trial-and-error or heuristic methods. These methods are not only suboptimal but also lack generalizability. A major challenge is the non-uniform temperature distribution during manufacturing, which affects the uniformity of the mechanical properties. To overcome these challenges, we have developed a framework based on Deep Reinforcement Learning (DRL). This framework dynamically adjusts process parameters to achieve an optimal control policy. Additionally, we introduce a cost-effective temperature simulation model of the deposition process. This model is particularly useful for researchers testing the proximal policy optimization algorithm. The experimental results demonstrate that DRL policies substantially improve temperature uniformity in Inconel 718, enhancing hardness variability with improvements of 31.8 % and 27.1 % in horizontal and vertical building directions, respectively. This research marks an important step toward achieving a highly intelligent and automated optimization of process parameters. It also proves to be robust and computationally efficient for future online implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goftmac发布了新的文献求助10
刚刚
英姑应助嘎嘎鸭采纳,获得10
1秒前
momo完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
乐乐应助做好胶水采纳,获得10
3秒前
3秒前
Jasper应助RANQIAO采纳,获得10
4秒前
4秒前
4秒前
李白发布了新的文献求助50
4秒前
6秒前
6秒前
7秒前
欢欢发布了新的文献求助10
7秒前
想学习发布了新的文献求助10
8秒前
活泼的梦凡完成签到,获得积分10
8秒前
9秒前
大个应助kk_iris采纳,获得10
9秒前
奋斗花生发布了新的文献求助10
9秒前
zzd发布了新的文献求助10
9秒前
9秒前
Owen应助归玖采纳,获得10
9秒前
吐丝麵包发布了新的文献求助10
10秒前
10秒前
风吹麦田应助轻松沛萍采纳,获得30
10秒前
kong完成签到,获得积分10
13秒前
Accepted发布了新的文献求助10
13秒前
13秒前
啵啵完成签到,获得积分10
13秒前
隐形曼青应助棕色垂耳兔采纳,获得10
13秒前
14秒前
lpy完成签到 ,获得积分10
14秒前
14秒前
shhoing应助luckweb采纳,获得10
14秒前
Hello应助欢喜的代容采纳,获得10
14秒前
科研通AI2S应助热情的板栗采纳,获得10
15秒前
16秒前
嘿嘿发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531254
求助须知:如何正确求助?哪些是违规求助? 4620100
关于积分的说明 14571639
捐赠科研通 4559623
什么是DOI,文献DOI怎么找? 2498523
邀请新用户注册赠送积分活动 1478518
关于科研通互助平台的介绍 1449953