Spatiotemporal Consistency Learning From Momentum Cues for Human Motion Prediction

计算机科学 人工智能 水准点(测量) 运动捕捉 运动(物理) 序列(生物学) 机器学习 计算机视觉 大地测量学 遗传学 生物 地理
作者
Haipeng Chen,Jiahui Hu,Wenyin Zhang,Pengxiang Su
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4577-4587 被引量:10
标识
DOI:10.1109/tcsvt.2023.3284013
摘要

Extrapolating future human motion based on the historical human pose sequence is the foundation of various intelligent applications. Numerous deep learning-based algorithms have been designed to address this task, achieving state-of-the-art performance on different human motion benchmark datasets. However, most existing methods employ three-dimensional coordinates of joints to demonstrate dynamic motion contexts implicitly. Unfortunately, it remains challenging in capturing motion information from the pose sequence. In this paper, we advocate explicitly describing dynamic contexts via the momentum of human motion mechanic space, as the momentum of a joint is explicit, temporal consistent, and can provide abundant information to the model. In addition, the single-stream methods play a dominant role in the field of human motion prediction. They usually capture motion information via the strategy of continuous or sparse sampling, which might obviate global or detailed local information. Therefore, we present a simple yet effective dual-stream method that can consider both the detailed and global temporal information through a combination of continuous and sparse sampling. The proposed dual-stream paradigm enables the improvement of computational efficiency and the short-term prediction accuracy concurrently. Furthermore, we present a novel temporal attention-based graph convolutional network (TA-GCN) to derive a spatiotemporally consistent motion representation, which can adequately consider the rationality of human body topology. Extensive experiments on two large motion prediction benchmark datasets (i.e., Human 3.6M and CMU Mocap) show that our algorithm achieves state-of-the-art performance both qualitatively and quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勾勾歪发布了新的文献求助10
刚刚
1秒前
情怀应助小机灵鬼采纳,获得10
1秒前
wxf发布了新的文献求助10
1秒前
打工人发布了新的文献求助10
2秒前
dasfqasfa发布了新的文献求助10
2秒前
浅眠完成签到,获得积分10
3秒前
江jiang发布了新的文献求助10
3秒前
科目三应助魏山槐采纳,获得10
3秒前
Avy发布了新的文献求助10
3秒前
4秒前
5秒前
鸭鸭发布了新的文献求助10
5秒前
7秒前
脑洞疼应助龚俊采纳,获得10
7秒前
动听的囧完成签到,获得积分10
8秒前
huco完成签到,获得积分10
8秒前
科研通AI2S应助xiluo采纳,获得10
8秒前
9秒前
123完成签到,获得积分10
11秒前
cz完成签到 ,获得积分10
11秒前
11秒前
朱文韬发布了新的文献求助10
12秒前
英姑应助鳗鱼香旋采纳,获得10
13秒前
英姑应助柴犬采纳,获得30
13秒前
科研通AI5应助崔哲辉采纳,获得10
14秒前
14秒前
JamesPei应助勾勾歪采纳,获得10
15秒前
科研通AI5应助江jiang采纳,获得10
15秒前
ear完成签到,获得积分10
16秒前
16秒前
大渡河完成签到,获得积分10
17秒前
852应助悲哀藏在现实中采纳,获得30
18秒前
科目三应助狂野如波采纳,获得10
18秒前
金熙美发布了新的文献求助10
19秒前
材料化学左亚坤完成签到,获得积分10
19秒前
龚俊发布了新的文献求助10
19秒前
研友_VZG7GZ应助繁华采纳,获得10
20秒前
小马甲应助暗月青影采纳,获得10
20秒前
jjyy应助甜美的秋尽采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4523412
求助须知:如何正确求助?哪些是违规求助? 3964554
关于积分的说明 12288137
捐赠科研通 3628668
什么是DOI,文献DOI怎么找? 1996794
邀请新用户注册赠送积分活动 1033377
科研通“疑难数据库(出版商)”最低求助积分说明 923025