PET-Diffusion: Unsupervised PET Enhancement Based on the Latent Diffusion Model

正电子发射断层摄影术 计算机科学 人工智能 Pet成像 核医学 医学物理学 医学
作者
Caiwen Jiang,Yongsheng Pan,Mianxin Liu,Lei Ma,Xiao Zhang,Jiameng Liu,Xiaosong Xiong,Dinggang Shen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-12 被引量:10
标识
DOI:10.1007/978-3-031-43907-0_1
摘要

Positron emission tomography (PET) is an advanced nuclear imaging technique with an irreplaceable role in neurology and oncology studies, but its accessibility is often limited by the radiation hazards inherent in imaging. To address this dilemma, PET enhancement methods have been developed by improving the quality of low-dose PET (LPET) images to standard-dose PET (SPET) images. However, previous PET enhancement methods rely heavily on the paired LPET and SPET data which are rare in clinic. Thus, in this paper, we propose an unsupervised PET enhancement (uPETe) framework based on the latent diffusion model, which can be trained only on SPET data. Specifically, our SPET-only uPETe consists of an encoder to compress the input SPET/LPET images into latent representations, a latent diffusion model to learn/estimate the distribution of SPET latent representations, and a decoder to recover the latent representations into SPET images. Moreover, from the theory of actual PET imaging, we improve the latent diffusion model of uPETe by 1) adopting PET image compression for reducing the computational cost of diffusion model, 2) using Poisson diffusion to replace Gaussian diffusion for making the perturbed samples closer to the actual noisy PET, and 3) designing CT-guided cross-attention for incorporating additional CT images into the inverse process to aid the recovery of structural details in PET. With extensive experimental validation, our uPETe can achieve superior performance over state-of-the-art methods, and shows stronger generalizability to the dose changes of PET imaging. The code of our implementation is available at https://github.com/jiang-cw/PET-diffusion .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
native发布了新的文献求助10
1秒前
yh发布了新的文献求助10
1秒前
Orange应助Ranchoujay采纳,获得10
1秒前
森气完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
传奇3应助GL采纳,获得10
3秒前
流光发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
CharlotteBlue应助Labubu采纳,获得30
6秒前
Jasper应助LLL采纳,获得10
6秒前
7秒前
小蘑菇应助aaa采纳,获得10
7秒前
8秒前
Said1223完成签到,获得积分10
9秒前
Hello应助流光采纳,获得10
9秒前
galeanthropia发布了新的文献求助10
10秒前
DE2022发布了新的文献求助10
10秒前
11秒前
易烊千玺发布了新的文献求助10
11秒前
12秒前
13秒前
萤lueluelue发布了新的文献求助10
14秒前
14秒前
16秒前
18秒前
21秒前
22秒前
aaa发布了新的文献求助10
22秒前
小满完成签到 ,获得积分10
22秒前
大呆驳回了赘婿应助
24秒前
勤恳幻梦发布了新的文献求助20
25秒前
王豆豆完成签到,获得积分10
25秒前
洋葱完成签到,获得积分10
27秒前
桐桐应助blangel采纳,获得10
28秒前
28秒前
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143