亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IDDF2024-ABS-0166 Metabolomics-driven plasma and tissue signatures and machine learning for gastric cancer diagnosis: a retrospective study and mendelian randomization study

孟德尔随机化 代谢组学 癌症 代谢组 生物标志物发现 恶性肿瘤 医学 计算生物学 生物信息学 肿瘤科 内科学 生物 蛋白质组学 生物化学 基因 遗传变异 基因型
作者
Juan Zhu,Xue Li,Yida Huang,Lingbin Du
出处
期刊:Clinical gastroenterology 卷期号:: A302.1-A302
标识
DOI:10.1136/gutjnl-2024-iddf.267
摘要

Background

Gastric cancer (GC) is a highly prevalent and deadly malignancy, necessitating timely diagnosis and intervention. However, current diagnoses predominantly hinge on gastroscopy, limited by invasiveness and low uptake rates. We aimed to develop diagnostic models for GC utilizing non-invasive plasma metabolic biomarkers.

Methods

We conducted a two-phase study involving 647 participants, comprising 277 GC and 370 non-GC. Candidate differential metabolites were identified in the discovery and validation phases using ultra-performance liquid chromatography-mass spectrometry, and a diagnostic model was developed using machine-learning algorithms. Then, mendelian randomization (MR) analysis was used to examine the causal association between metabolic biomarkers and the risk of GC. These metabolic biomarkers were validated in the GC tissue by comparing them with tumor-adjacent non-malignant paired tissue.

Results

Twenty-six replicated plasma metabolites were identified in the discovery and validation dataset. Six features were selected to construct a metabolic panel with excellent diagnostic performance (AUCs of 0.947–0.982 in the discovery dataset and 0.920–0.951 in the validation dataset). The sensitivity of the panel (0.900–0.940) significantly outperformed traditional clinical protein biomarkers (0.020–0.240). The panel also exhibited promise in early GC detection, with AUCs of 0.914–0.961 in the discovery dataset and 0.894–0.940 in the validation dataset. Among the identified metabolites, eight were traced differentially expressed in GC and paired adjacent tissues, and two (2-hydroxy-3-methylvalerate, isovalerylcarnitine(C5)) were causally linked with GC in MR analysis.

Conclusions

This study identifies promising metabolic signatures for GC diagnosis and develops a reliable diagnostic model. The findings underscore the potential of metabolic analysis for accurate screening and early detection of GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wangyudi发布了新的文献求助10
2秒前
疯狂的凡梦完成签到 ,获得积分10
31秒前
35秒前
豆豆完成签到 ,获得积分10
43秒前
BryanCh完成签到,获得积分10
48秒前
思源应助激动的哈密瓜采纳,获得10
55秒前
Nowind完成签到,获得积分10
1分钟前
杜钿湄完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
卡卡东完成签到 ,获得积分10
1分钟前
852应助Mr采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
CATH完成签到 ,获得积分10
1分钟前
1分钟前
是阮软不是懒懒完成签到 ,获得积分10
1分钟前
Mr发布了新的文献求助10
1分钟前
andrele发布了新的文献求助10
1分钟前
1分钟前
闪闪落雁发布了新的文献求助10
1分钟前
qq完成签到,获得积分10
1分钟前
jyy完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
sirf完成签到 ,获得积分10
2分钟前
lili发布了新的文献求助10
2分钟前
哇哦哦完成签到 ,获得积分10
2分钟前
顾矜应助延时小马达采纳,获得10
2分钟前
延时小马达完成签到,获得积分10
3分钟前
不安听露完成签到 ,获得积分10
3分钟前
Owen应助科研通管家采纳,获得30
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
加油完成签到,获得积分10
3分钟前
power完成签到,获得积分10
3分钟前
无花果应助lili采纳,获得10
3分钟前
21完成签到 ,获得积分10
3分钟前
renerxiao完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805966
求助须知:如何正确求助?哪些是违规求助? 4121609
关于积分的说明 12752392
捐赠科研通 3855383
什么是DOI,文献DOI怎么找? 2123040
邀请新用户注册赠送积分活动 1145181
关于科研通互助平台的介绍 1036818