清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Physics-informed dual-objective optimization of high-entropy-alloy nanozymes by a robotic AI chemist

化学家 对偶(语法数字) 合金 双重目的 计算机科学 纳米技术 工程类 化学 材料科学 机械工程 哲学 冶金 语言学 有机化学
作者
Man Luo,Zikai Xie,Huirong Li,Baicheng Zhang,Jiaqi Cao,Yan Huang,Qing Zhu,Linjiang Chen,Jun Jiang,Yi Luo
标识
DOI:10.26434/chemrxiv-2024-mbk38
摘要

Engineering artificial nanozymes as substitutes for natural enzymes presents a significant scientific challenge. High entropy alloys (HEAs) have emerged as promising candidates for mimicking peroxidase (POD) activity thanks to their unique properties and versatility. However, designing or discovering HEAs that surpass the catalytic efficiency of natural horseradish peroxidase involves complex challenges, often hindered by the multidimensional nature of HEAs’ compositional variability and the intricate interplay of enzymatic behaviours. Therefore, an intelligent and efficient approach to accelerate this discovery is crucial. In this study, we address these challenges by deploying a robotic artificial-intelligence chemist equipped with theoretical calculations, machine learning, Bayesian optimization, and on-the-fly data analysis by a large language model (LLM). Our approach centres on a physics-informed, multi-objective optimization framework that simultaneously optimizes multiple desirable properties of nanozymes, including maximum reaction rate and substrate affinity, ultimately optimizing catalytic efficiency. By integrating an auxiliary knowledge model based on physical insights and collaborative decision-making enabled by LLM-in-the-loop into Bayesian optimization, we enhanced the data-driven discovery workflow. Our physics-informed approach, with instant LLM-in-the-loop feedback, significantly outperformed both random sampling and standard Bayesian optimization. Consequently, we efficiently explored a vast chemical space and identified HEAs with enzymatic properties that significantly exceed those of the most effective catalysts based on HEAs or single atoms reported in the literature, as well as the natural enzyme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
28秒前
33秒前
czj完成签到 ,获得积分10
57秒前
57秒前
量子星尘发布了新的文献求助10
1分钟前
儒雅的如松完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ding应助三千月色么么哒采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
1分钟前
李巧儿发布了新的文献求助10
2分钟前
顾矜应助三千月色么么哒采纳,获得10
2分钟前
李巧儿完成签到,获得积分10
2分钟前
2分钟前
2分钟前
zhengliumd发布了新的文献求助10
2分钟前
2分钟前
今后应助务实青亦采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
务实的奇迹完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
fogsea完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
内向映天完成签到 ,获得积分10
4分钟前
可夫司机完成签到 ,获得积分10
4分钟前
4分钟前
Alex-Song完成签到 ,获得积分0
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270583
求助须知:如何正确求助?哪些是违规求助? 3801010
关于积分的说明 11910991
捐赠科研通 3447840
什么是DOI,文献DOI怎么找? 1891049
邀请新用户注册赠送积分活动 941797
科研通“疑难数据库(出版商)”最低求助积分说明 845954