Artificial neural networks for magnetoencephalography: a review of an emerging field

脑磁图 计算机科学 领域(数学) 人工智能 人工神经网络 机器学习 神经解码 神经影像学 工件(错误) 预处理器 数据科学 解码方法 脑电图 神经科学 生物 纯数学 电信 数学
作者
Arthur Dehgan,Hamza Abdelhedi,Vanessa Hadid,Irina Rish,Karim Jerbi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:22 (3): 031001-031001 被引量:1
标识
DOI:10.1088/1741-2552/addd4a
摘要

Abstract Objective . Magnetoencephalography (MEG) is a cutting-edge neuroimaging technique that measures the intricate brain dynamics underlying cognitive processes with an unparalleled combination of high temporal and spatial precision. While MEG data analytics have traditionally relied on advanced signal processing and mathematical and statistical tools, the recent surge in artificial intelligence has led to the growing use of machine learning (ML) methods for MEG data classification. An emerging trend in this field is the use of artificial neural networks (ANNs) to address various MEG-related tasks. This review aims to provide a comprehensive overview of the state of the art in this area. Approach . This topical review included studies that applied ANNs to MEG data. Studies were sourced from PubMed, Google Scholar, arXiv, and bioRxiv using targeted search queries. The included studies were categorized into three groups: ‘Classification’, ‘Modeling’, and ‘Other’. Key findings and trends were summarized to provide a comprehensive assessment of the field. Main results . We identified 119 relevant studies, with 70 focused on ‘Classification’, 16 on ‘Modeling’, and 33 in the ‘Other’ category. ‘Classification’ studies addressed tasks such as brain decoding, clinical diagnostics, and brain–computer interfaces implementations, often achieving high predictive accuracy. ‘Modeling’ studies explored the alignment between ANN activations and brain processes, offering insights into the neural representations captured by these networks. The ‘Other’ category demonstrated innovative uses of ANNs for artifact correction, preprocessing, and neural source localization. Significance . By establishing a detailed portrait of the current state of the field, this review highlights the strengths and current limitations of ANNs in MEG research. It also provides practical recommendations for future work, offering a helpful reference for seasoned researchers and newcomers interested in using ANNs to explore the complex dynamics of the human brain with MEG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accept完成签到,获得积分10
1秒前
2秒前
BK发布了新的文献求助10
3秒前
现代觅珍发布了新的文献求助10
4秒前
10711完成签到,获得积分10
5秒前
7秒前
SAKURA完成签到 ,获得积分10
7秒前
8秒前
自然雁风完成签到,获得积分10
9秒前
LeiYu完成签到 ,获得积分10
9秒前
半壶月色半边天完成签到 ,获得积分10
9秒前
非洲三巨头完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
21完成签到 ,获得积分10
12秒前
xxi发布了新的文献求助10
12秒前
逆风行SXDZ发布了新的文献求助10
13秒前
隔壁小王完成签到,获得积分10
13秒前
科目三应助QinQin采纳,获得10
14秒前
结实灭男发布了新的文献求助10
16秒前
小马甲应助风中怜雪采纳,获得10
16秒前
阳6完成签到 ,获得积分10
16秒前
科研牛马完成签到,获得积分10
17秒前
Owen应助老实白云采纳,获得10
18秒前
现代觅珍完成签到,获得积分10
18秒前
19秒前
所所应助xxi采纳,获得10
20秒前
21秒前
22秒前
研友_LNoAMn完成签到,获得积分10
22秒前
南枝焙雪发布了新的文献求助10
22秒前
jsss发布了新的文献求助10
23秒前
26秒前
kc135完成签到,获得积分10
26秒前
研友_LNoAMn发布了新的文献求助10
27秒前
27秒前
大王完成签到,获得积分10
28秒前
ding应助QinQin采纳,获得10
28秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637884
求助须知:如何正确求助?哪些是违规求助? 4744268
关于积分的说明 15000613
捐赠科研通 4796097
什么是DOI,文献DOI怎么找? 2562306
邀请新用户注册赠送积分活动 1521844
关于科研通互助平台的介绍 1481714