RAAGR2-Net: A brain tumor segmentation network using parallel processing of multiple spatial frames

计算机科学 人工智能 分割 网(多面体) 模式识别(心理学) 并行处理 图像分割 图像处理 计算机视觉 并行计算 图像(数学) 数学 几何学
作者
Mobeen Ur Rehman,Jihyoung Ryu,Imran Fareed Nizami,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106426-106426 被引量:45
标识
DOI:10.1016/j.compbiomed.2022.106426
摘要

Brain tumors are one of the most fatal cancers. Magnetic Resonance Imaging (MRI) is a non-invasive method that provides multi-modal images containing important information regarding the tumor. Many contemporary techniques employ four modalities: T1-weighted (T1), T1-weighted with contrast (T1c), T2-weighted (T2), and fluid-attenuation-inversion-recovery (FLAIR), each of which provides unique and important characteristics for the location of each tumor. Although several modern procedures provide decent segmentation results on the multimodal brain tumor image segmentation benchmark (BraTS) dataset, they lack performance when evaluated simultaneously on all the regions of MRI images. Furthermore, there is still room for improvement due to parameter limitations and computational complexity. Therefore, in this work, a novel encoder–decoder-based architecture is proposed for the effective segmentation of brain tumor regions. Data pre-processing is performed by applying N4 bias field correction, z-score, and 0 to 1 resampling to facilitate model training. To minimize the loss of location information in different modules, a residual spatial pyramid pooling (RASPP) module is proposed. RASPP is a set of parallel layers using dilated convolution. In addition, an attention gate (AG) module is used to efficiently emphasize and restore the segmented output from extracted feature maps. The proposed modules attempt to acquire rich feature representations by combining knowledge from diverse feature maps and retaining their local information. The performance of the proposed deep network based on RASPP, AG, and recursive residual (R2) block termed RAAGR2-Net is evaluated on the BraTS benchmarks. The experimental results show that the suggested network outperforms existing networks that exhibit the usefulness of the proposed modules for “fine” segmentation. The code for this work is made available online at: https://github.com/Rehman1995/RAAGR2-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Unbelievable完成签到,获得积分10
1秒前
年轻迪奥发布了新的文献求助10
1秒前
XSB完成签到,获得积分10
2秒前
4秒前
6秒前
瑾木完成签到,获得积分10
6秒前
妙妙脆角完成签到,获得积分10
6秒前
luoshikun完成签到,获得积分10
9秒前
林樾发布了新的文献求助30
9秒前
降娄发布了新的文献求助10
9秒前
11秒前
WENDY发布了新的文献求助10
11秒前
11秒前
12秒前
情怀应助树123采纳,获得10
13秒前
14秒前
16秒前
LLY完成签到,获得积分10
17秒前
光亮的半山完成签到,获得积分10
19秒前
20秒前
20秒前
米共完成签到 ,获得积分10
21秒前
华仔应助美丽梦桃采纳,获得10
21秒前
Xx发布了新的文献求助10
22秒前
22秒前
树123发布了新的文献求助10
25秒前
子车雁开完成签到,获得积分10
25秒前
楚狂接舆完成签到,获得积分10
25秒前
25秒前
shuang0116应助淡写采纳,获得20
27秒前
27秒前
dddd发布了新的文献求助30
27秒前
大模型应助无心的仙人掌采纳,获得10
28秒前
29秒前
现代的研发布了新的文献求助10
29秒前
清爽的乐曲完成签到,获得积分10
32秒前
科研通AI5应助小仙采纳,获得10
32秒前
直率的乐萱完成签到 ,获得积分10
32秒前
鄢廷芮完成签到 ,获得积分10
33秒前
LLY发布了新的文献求助10
33秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743