DeepChrome: deep-learning for predicting gene expression from histone modifications

组蛋白 表观遗传学 计算生物学 计算机科学 判别式 卷积神经网络 深度学习 人工智能 基因表达调控 机器学习 特征(语言学) 生物 基因 遗传学 语言学 哲学
作者
Ritambhara Singh,Jack Lanchantin,Gabriel Robins,Yanjun Qi
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:32 (17): i639-i648 被引量:271
标识
DOI:10.1093/bioinformatics/btw427
摘要

Histone modifications are among the most important factors that control gene regulation. Computational methods that predict gene expression from histone modification signals are highly desirable for understanding their combinatorial effects in gene regulation. This knowledge can help in developing 'epigenetic drugs' for diseases like cancer. Previous studies for quantifying the relationship between histone modifications and gene expression levels either failed to capture combinatorial effects or relied on multiple methods that separate predictions and combinatorial analysis. This paper develops a unified discriminative framework using a deep convolutional neural network to classify gene expression using histone modification data as input. Our system, called DeepChrome, allows automatic extraction of complex interactions among important features. To simultaneously visualize the combinatorial interactions among histone modifications, we propose a novel optimization-based technique that generates feature pattern maps from the learnt deep model. This provides an intuitive description of underlying epigenetic mechanisms that regulate genes.We show that DeepChrome outperforms state-of-the-art models like Support Vector Machines and Random Forests for gene expression classification task on 56 different cell-types from REMC database. The output of our visualization technique not only validates the previous observations but also allows novel insights about combinatorial interactions among histone modification marks, some of which have recently been observed by experimental studies.Codes and results are available at www.deepchrome.orgyanjun@virginia.eduSupplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸吐司发布了新的文献求助10
刚刚
SciGPT应助喽喽采纳,获得10
刚刚
111完成签到,获得积分10
1秒前
冰冰发布了新的文献求助10
2秒前
梅莉达完成签到,获得积分10
3秒前
3秒前
4秒前
6秒前
许三多完成签到,获得积分10
6秒前
博修发布了新的文献求助10
9秒前
Hresearch发布了新的文献求助10
9秒前
10秒前
文龙发布了新的文献求助10
10秒前
12秒前
13秒前
企鹅发布了新的文献求助10
13秒前
卢振宇完成签到,获得积分10
14秒前
彭于晏应助abcd采纳,获得10
15秒前
Akim应助玮哥不是伟哥采纳,获得10
16秒前
小马甲应助唐冷菱采纳,获得30
16秒前
16秒前
17秒前
111发布了新的文献求助10
19秒前
19秒前
不安的橘子完成签到 ,获得积分10
20秒前
21秒前
跳跳虎完成签到,获得积分10
21秒前
Calmbiao发布了新的文献求助10
22秒前
23秒前
上官若男应助小红采纳,获得10
25秒前
朝阳区李知恩应助温柔晓刚采纳,获得200
26秒前
26秒前
27秒前
包容山灵发布了新的文献求助10
27秒前
大模型应助Calmbiao采纳,获得10
29秒前
botanist完成签到 ,获得积分10
29秒前
29秒前
33秒前
斜阳西下柳缠锦完成签到,获得积分10
34秒前
36秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840426
求助须知:如何正确求助?哪些是违规求助? 3382578
关于积分的说明 10524881
捐赠科研通 3102087
什么是DOI,文献DOI怎么找? 1708648
邀请新用户注册赠送积分活动 822618
科研通“疑难数据库(出版商)”最低求助积分说明 773428