Effect of high variation in transcript expression on identifying differentially expressed genes in RNA-seq analysis.

RNA序列 生物 基因 转录组 基因表达 遗传学 基因表达谱 核糖核酸 计算生物学 参考基因 微阵列 信使核糖核酸 微阵列分析技术 基因表达调控
作者
Weitong Cui,Huaru Xue,Yifan Geng,Jing Zhang,Yajun Liang,Xuewen Tian,Qinglu Wang
出处
期刊:Annals of Human Genetics [Wiley]
卷期号:85 (6): 235-244
标识
DOI:10.1111/ahg.12441
摘要

Great efforts have been made on the algorithms that deal with RNA-seq data to enhance the accuracy and efficiency of differential expression (DE) analysis. However, no consensus has been reached on the proper threshold values of fold change and adjusted p-value for filtering differentially expressed genes (DEGs). It is generally believed that the more stringent the filtering threshold, the more reliable the result of a DE analysis. Nevertheless, by analyzing the impact of both adjusted p-value and fold change thresholds on DE analyses, with RNA-seq data obtained for three different cancer types from the Cancer Genome Atlas (TCGA) database, we found that, for a given sample size, the reproducibility of DE results became poorer when more stringent thresholds were applied. No matter which threshold level was applied, the overlap rates of DEGs were generally lower for small sample sizes than for large sample sizes. The raw read count analysis demonstrated that the transcript expression of the same gene in different samples, whether in tumor groups or in normal groups, showed high variations, which resulted in a drastic fluctuation in fold change values and adjustedp-values when different sets of samples were used. Overall, more stringent thresholds did not yield more reliable DEGs due to high variations in transcript expression; the reliability of DEGs obtained with small sample sizes was more susceptible to these variations. Therefore, less stringent thresholds are recommended for screening DEGs. Moreover, large sample sizes should be considered in RNA-seq experimental designs to reduce the interfering effect of variations in transcript expression on DEG identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123321完成签到 ,获得积分10
1秒前
duonicola完成签到,获得积分10
2秒前
muhum完成签到 ,获得积分10
3秒前
诸青梦完成签到 ,获得积分10
6秒前
kchen85完成签到,获得积分0
6秒前
酷酷的王完成签到 ,获得积分10
8秒前
十三完成签到 ,获得积分10
8秒前
xy小侠女完成签到,获得积分10
12秒前
kangkang完成签到 ,获得积分10
12秒前
happiness完成签到 ,获得积分10
13秒前
藜藜藜在乎你完成签到 ,获得积分10
13秒前
yydsyk完成签到,获得积分10
13秒前
16秒前
老白完成签到,获得积分10
21秒前
sscss完成签到,获得积分10
22秒前
蜀山刀客完成签到,获得积分10
25秒前
青青完成签到 ,获得积分10
25秒前
rice0601完成签到,获得积分10
26秒前
湖以给拿捏陕科大的求助进行了留言
26秒前
迅速凝竹完成签到 ,获得积分10
27秒前
龙傲天完成签到,获得积分10
27秒前
从心随缘完成签到 ,获得积分10
31秒前
LingYun完成签到,获得积分10
32秒前
33秒前
辛勤的泽洋完成签到 ,获得积分10
34秒前
chrysan完成签到,获得积分10
34秒前
犹豫代曼完成签到,获得积分10
35秒前
36秒前
典雅三颜完成签到 ,获得积分10
37秒前
叼面包的数学狗完成签到 ,获得积分10
38秒前
小周完成签到 ,获得积分10
39秒前
深情安青应助一个小胖子采纳,获得10
40秒前
一枝完成签到 ,获得积分10
41秒前
zyw完成签到 ,获得积分10
41秒前
cgliuhx完成签到,获得积分10
42秒前
光亮面包完成签到 ,获得积分10
42秒前
慕青应助hefang采纳,获得10
43秒前
43秒前
小李老博应助拓跋涵易采纳,获得10
44秒前
顺顺利利毕业完成签到 ,获得积分10
44秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833955
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492814
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859