生长素
生物
RNA干扰
基因
基因沉默
表型
遗传学
基因家族
同源(生物学)
基因表达
拟南芥
细胞生物学
核糖核酸
突变体
作者
Carole Bassa,Isabelle Mila,Mondher Bouzayen,Corinne Audran
摘要
The phytohormone auxin is known to regulate several aspects of plant development, and Aux/IAA transcription factors play a pivotal role in auxin signaling. To extend our understanding of the multiple functions of Aux/IAAs further, the present study describes the functional characterization of Sl-IAA27, a member of the tomato Aux/IAA gene family. Sl-IAA27 displays a distinct behavior compared with most Aux/IAA genes regarding the regulation of its expression by auxin, and the Sl-IAA27-encoded protein harbors a unique motif of unknown function also present in Sl-IAA9 and remarkably conserved in monocot and dicot species. Tomato transgenic plants underexpressing the Sl-IAA27 gene revealed multiple phenotypes related to vegetative and reproductive growth. Silencing of Sl-IAA27 results in higher auxin sensitivity, altered root development and reduced Chl content in leaves. Both ovule and pollen display a dramatic loss of fertility in Sl-IAA27 down-regulated lines, and the internal anatomy of the flower and the fruit are modified, with an enlarged placenta in smaller fruits. In line with the reduced Chl content in Sl-IAA27 RNA interference (RNAi) leaves, genes involved in Chl synthesis display lower expression at the level of transcript accumulation. Even though Sl-IAA27 is closely related to Sl-IAA9 in terms of sequence homology and the encoded proteins share common structural features, the data indicate that the two genes regulate tomato fruit initiation and development in a distinct manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI