A multi-objective particle swarm optimization algorithm based on two-archive mechanism

粒子群优化 水准点(测量) 计算机科学 多群优化 选择(遗传算法) 相似性(几何) 算法 群体行为 进化算法 数学优化 任务(项目管理) 趋同(经济学) 数学 人工智能 工程类 图像(数学) 经济 经济增长 系统工程 地理 大地测量学
作者
Yingying Cui,Xi Meng,Junfei Qiao
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:119: 108532-108532 被引量:57
标识
DOI:10.1016/j.asoc.2022.108532
摘要

As a powerful optimization technique, multi-objective particle swarm optimization algorithms have been widely used in various fields. However, performing well in terms of convergence and diversity simultaneously is still a challenging task for most existing algorithms. In this paper, a multi-objective particle swarm optimization algorithm based on two-archive mechanism (MOPSO_TA) is proposed for the above challenge. First, two archives, including convergence archive (CA) and diversity archive (DA) are designed to emphasize convergence and diversity separately. On one hand, particles are updated by indicator-based scheme to provide selection pressure toward the optimal direction in CA. On the other hand, shift-based density estimation and similarity measure are adopted to preserve diverse candidate solutions in DA. Second, the genetic operators are conducted on particles from CA and DA to further enhance the quality of solutions as global leaders. Then the search ability of MOPSO_TA can be improved by performing hybrid operators. Furthermore, to balance global exploration and local exploitation of MOPSO_TA, a flight parameters adjustment mechanism is developed based on the evolutionary information. Finally, the proposed algorithm is compared experimentally with several representative multi-objective optimization algorithms on 21 benchmark functions. The experimental results demonstrate the competitiveness and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dadigege应助Li采纳,获得10
1秒前
烟花应助大锤采纳,获得10
1秒前
orixero应助ATOM采纳,获得10
1秒前
1秒前
车剑锋完成签到,获得积分10
3秒前
富强民主发布了新的文献求助10
3秒前
自信的冬日完成签到,获得积分10
4秒前
4秒前
happiness发布了新的文献求助10
5秒前
5秒前
昏睡的蟠桃应助林樾采纳,获得50
6秒前
种花兔完成签到,获得积分20
8秒前
胜胜糖完成签到 ,获得积分10
9秒前
搜集达人应助QP34采纳,获得10
9秒前
amanda完成签到 ,获得积分20
10秒前
科研通AI5应助后手歪歪采纳,获得10
10秒前
Nikii发布了新的文献求助10
11秒前
爱静静应助yx采纳,获得10
12秒前
呜呜呜呜呜呜呜呜完成签到,获得积分10
12秒前
13秒前
ANT完成签到 ,获得积分10
14秒前
呆萌的太阳完成签到 ,获得积分10
14秒前
危机的安容完成签到,获得积分10
15秒前
慕若涵冰完成签到,获得积分10
15秒前
123完成签到,获得积分10
16秒前
科研通AI5应助17采纳,获得10
16秒前
susu发布了新的文献求助10
19秒前
19秒前
Wonder发布了新的文献求助10
24秒前
24秒前
谢雷XIELei应助一个小胖子采纳,获得10
26秒前
moony完成签到 ,获得积分10
26秒前
富强民主完成签到,获得积分10
28秒前
充电宝应助Luna采纳,获得10
28秒前
star发布了新的文献求助10
28秒前
Hao发布了新的文献求助10
29秒前
29秒前
luo发布了新的文献求助10
30秒前
专注的孤风完成签到,获得积分10
30秒前
31秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729