Comparison of the mechanisms of estrogen disrupting effects between triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP)

雌激素受体 化学 磷酸三苯酯 探地雷达 有机磷 雌激素受体α 雌激素 内科学 内分泌学 生物 有机化学 医学 癌症 杀虫剂 农学 阻燃剂 乳腺癌
作者
Xiaoya Ji,Na Li,Mei Ma,Xinyan Li,Kongrui Zhu,Kaifeng Rao,Zijian Wang,Jingfeng Wang,Yanjun Fang
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:229: 113069-113069 被引量:23
标识
DOI:10.1016/j.ecoenv.2021.113069
摘要

As the typical aryl-organophosphate flame retardants (OPFRs), triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were reported to be estrogen disruptors. However, estrogen receptor α (ERα) binding experiments could not explain their biological effects. In this study, their action on ERα, G protein-coupled estrogen receptor (GPER) and the synthesis of 17β-estradiol (E2) were investigated using in vitro assays and molecular docking. The results showed that TPhP acted as an ERα agonist and recruited steroid receptor co-activator 1 (SRC1) and 3 (SRC3), which was found for the first time. Unlike TPhP, TDCIPP acted as an ERα antagonist. However, both TPhP and TDCIPP activated the estrogen pathway by GPER in SKBR3 cells which were lack of ERα. Although molecular docking results revealed that both TPhP and TDCIPP could dock into ERα and GPER, their substituent groups and combination mode might affect the receptor activation. In addition, by using estrogen biosynthesis assay in H295R cells, both of TPhP and TDCIPP were found to promote E2 synthesis and E2/T ratio involving their different alteration on levels of progesterone, testosterone and estrone, and expression of various key genes. Our data proposed estrogen-disrupting mechanism frameworks of TPhP and TDCIPP. Moreover, our results will contribute to future construction of adverse outcome pathway (AOP) framework of endocrine disruptors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助现代绮玉采纳,获得10
刚刚
大个应助啊哈采纳,获得10
刚刚
科研通AI2S应助巫马嫣然采纳,获得10
刚刚
刚刚
YooM发布了新的文献求助10
1秒前
2秒前
共享精神应助FK7采纳,获得10
2秒前
2秒前
wuaaaaa_L发布了新的文献求助10
2秒前
2秒前
lvlei发布了新的文献求助10
2秒前
枫叶完成签到,获得积分20
2秒前
依灵完成签到,获得积分10
3秒前
changmengying完成签到,获得积分10
3秒前
1LDan完成签到,获得积分10
3秒前
虞美人发布了新的文献求助10
3秒前
汉堡包应助Sun采纳,获得10
3秒前
3秒前
戒骄戒躁发布了新的文献求助10
3秒前
zhong_chuan完成签到,获得积分10
3秒前
CyndiaSUN完成签到,获得积分10
3秒前
我是老大应助狂野的若雁采纳,获得10
4秒前
吴谷杂粮发布了新的文献求助20
4秒前
积极墨镜完成签到,获得积分10
5秒前
wdn0411发布了新的文献求助10
6秒前
鲸123完成签到,获得积分20
6秒前
积极玲完成签到,获得积分10
6秒前
无花果应助感动的一刀采纳,获得10
6秒前
枫叶发布了新的文献求助10
6秒前
7秒前
17871635733完成签到,获得积分10
7秒前
7秒前
SciGPT应助雪雪儿采纳,获得10
7秒前
Denmark发布了新的文献求助10
8秒前
9秒前
刘小倩儿发布了新的文献求助10
9秒前
10秒前
核桃发布了新的文献求助20
10秒前
10秒前
yyyyyy完成签到,获得积分10
10秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
茶叶生物化学 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828671
求助须知:如何正确求助?哪些是违规求助? 3371146
关于积分的说明 10466478
捐赠科研通 3090977
什么是DOI,文献DOI怎么找? 1700623
邀请新用户注册赠送积分活动 817954
科研通“疑难数据库(出版商)”最低求助积分说明 770618