已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Deep Learning Based ANPR Pipeline for Vehicle Access Control

计算机科学 管道(软件) 深度学习 人工智能 管道运输 计算机视觉 目标检测 模式识别(心理学) 环境工程 工程类 程序设计语言
作者
Muhammad Adnan,Salma Salma,Maham Saeed,Adil Zulfiqar,Yazeed Yasin Ghadi,Muhammad Adnan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 64172-64184 被引量:10
标识
DOI:10.1109/access.2022.3183101
摘要

Computer Vision and Deep Learning technology are playing a key role in the development of Automatic Number Plate Recognition (ANPR) to achieve the goal of an Intelligent Transportation System (ITS).ANPR systems and pipelines presented in the literature often work on a specific layout of the number plate as every region has a unique plate configuration, font style, size, and layout formation.In this paper, we have developed a smart vehicle access control system considering a wide variety of plate formations and styles for different Asian and European countries and presented novel deep learning based ANPR pipeline that can be used for heterogeneous number plates.The presented improved ANPR pipeline detects vehicle front/rear view and subsequently localizes the number plate area using the YOLOv4 (You Only Look Once) object detection models.Further, an algorithm identifies the unique plate layout, which is either a single or double row layout in different countries, and the last step in the pipeline is to recognize the number plate label using a deep learning architecture (i.e., AlexNet or R-CNNL3).The results show that our trained YOLOv4 model for vehicle front/rear view detection achieves a 98.42% mAP score, and the number plate localization model achieves a 99.71% mAP score on a 0.50 threshold.The overall average plate recognition accuracy of our proposed deep learning-based ANPR pipeline using R-CNNL3 architecture achieved a single character recognition accuracy of 96%, while AlexNet architecture recognized a single character with a 98% accuracy.In contrast, the ANPR pipeline using the OCR method is found to be 90.94%,while latency is computed as 0.99 s/frame on Core i5 CPU and 0.42 s/frame on RTX 2060 GPU.The proposed ANPR system using a deep learning approach is preferred due to better accuracy, but it requires a high-performance GPU for real-time implementation.The presented pipeline is developed and implemented for smart vehicle access control, but it can be deployed for any ANPR application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Bin_Liu发布了新的文献求助10
2秒前
shimhjy应助稳重的峻熙采纳,获得20
6秒前
snah完成签到 ,获得积分10
6秒前
SSSSCCCCIIII完成签到,获得积分10
10秒前
Jasper应助Jenny采纳,获得100
10秒前
夏侯夏侯完成签到 ,获得积分10
13秒前
朱笑白完成签到 ,获得积分10
13秒前
沉静乾完成签到,获得积分10
13秒前
在水一方应助sln采纳,获得10
14秒前
罗rr完成签到 ,获得积分10
16秒前
zhi-pengbao完成签到,获得积分0
16秒前
今后应助zzzzzxh采纳,获得10
16秒前
dawei完成签到,获得积分10
20秒前
小马甲应助Bbsheep采纳,获得10
20秒前
21秒前
吃的饱饱呀完成签到 ,获得积分10
22秒前
Lsh173373完成签到 ,获得积分10
23秒前
poolgreen完成签到,获得积分10
25秒前
1111完成签到 ,获得积分10
26秒前
绝尘发布了新的文献求助10
26秒前
ooo完成签到 ,获得积分10
27秒前
田様应助原野采纳,获得10
27秒前
小鱼完成签到 ,获得积分10
28秒前
30秒前
余念安完成签到 ,获得积分10
32秒前
星辰大海应助结实初翠采纳,获得10
33秒前
安静的棉花糖完成签到 ,获得积分10
34秒前
sln发布了新的文献求助10
35秒前
科目三应助调皮的千万采纳,获得10
37秒前
45秒前
sln完成签到,获得积分10
48秒前
summer完成签到,获得积分10
49秒前
崔佳鑫完成签到 ,获得积分10
49秒前
50秒前
邓娅琴完成签到 ,获得积分10
52秒前
原野完成签到,获得积分10
53秒前
54秒前
吾日三省吾身完成签到 ,获得积分10
54秒前
55秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800840
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329131
捐赠科研通 3062791
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702