Ligament Cell Biology: Effect of Mechanical Loading

细胞生物学 生物 细胞 生物化学
出处
期刊:Cellular Physiology and Biochemistry [Karger Publishers]
卷期号:59 (2): 252-295
标识
DOI:10.33594/000000773
摘要

Ligaments are biomechanically specialized connective tissues that maintain joint stability and guide motion under complex loading conditions. At the cellular and molecular levels, ligament homeostasis is governed by fibroblast-like cells (ligamentocytes) embedded in an intricately organized ECM composed predominantly of type I collagen, with contributions from type III collagen, elastin, proteoglycans, and glycoproteins. These cells continuously sense and respond to mechanical stimuli—tension, compression, and shear—through mechanotransduction pathways involving integrins, focal adhesions, cytoskeletal remodeling, and mechanosensitive ion channels. Downstream signaling cascades, including MAPKs and PI3K/AKT, integrate biomechanical cues with growth factor and cytokine signaling to fine-tune gene expression, collagen fibrillogenesis, and ECM turnover. Distinct from tendons, ligaments must adapt to multidirectional loads, resulting in unique ECM compositions and cellular phenotypes. Appropriate mechanical loading maintains collagen alignment, promotes ECM integrity, and stabilizes the ligament cell phenotype. By contrast, insufficient or excessive load alters the molecular balance, triggering catabolic processes, inflammation, and disorganized ECM assembly. This delicate equilibrium also underlies the ligamentization observed in ACL graft remodeling, where controlled mechanical environments and molecular interventions accelerate the acquisition of ligamentous properties. Emerging insights into transcriptional and epigenetic regulation, growth factor-mediated cues, and cytokine-driven responses offer avenues to engineer ligament-like tissues and optimize recovery strategies. By leveraging molecular knowledge of cell–matrix interactions, growth factor profiles, and genetic/epigenetic modulators, clinicians and researchers can design tailored loading protocols, biomimetic scaffolds, and regenerative therapies. These approaches aim to restore ligament functionality, enhance graft integration, and prevent degenerative changes, ultimately improving patient outcomes in ligament injury repair and reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dsfafd发布了新的文献求助10
1秒前
善学以致用应助bububusbu采纳,获得10
3秒前
脑洞疼应助biomichael采纳,获得10
3秒前
Shylie发布了新的文献求助10
6秒前
dsfafd完成签到,获得积分10
6秒前
向雨竹完成签到,获得积分10
7秒前
汉堡包应助Cassie采纳,获得10
7秒前
傻自强呀发布了新的文献求助10
7秒前
夏荧荧完成签到,获得积分20
8秒前
lyj完成签到,获得积分10
10秒前
情怀应助Hodlumm采纳,获得10
16秒前
19秒前
科研通AI5应助西柚柠檬采纳,获得10
19秒前
21秒前
22秒前
bububusbu发布了新的文献求助10
26秒前
26秒前
Dr.lee发布了新的文献求助10
26秒前
不爱科研完成签到 ,获得积分10
27秒前
ww发布了新的文献求助10
29秒前
科研通AI5应助Hodlumm采纳,获得10
30秒前
孤独的巨人完成签到,获得积分10
30秒前
30秒前
领导范儿应助酷丫采纳,获得10
34秒前
AAAAA给秀丽白昼的求助进行了留言
35秒前
爆米花应助yoyo采纳,获得10
45秒前
46秒前
48秒前
50秒前
含蓄的明雪完成签到,获得积分10
50秒前
小鱼发布了新的文献求助10
55秒前
57秒前
abiden发布了新的文献求助30
1分钟前
1分钟前
专炸油条完成签到 ,获得积分10
1分钟前
1分钟前
聪明盈完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824368
求助须知:如何正确求助?哪些是违规求助? 3366662
关于积分的说明 10441995
捐赠科研通 3085959
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816447
科研通“疑难数据库(出版商)”最低求助积分说明 769640