Identification of functional dynamic brain states based on graph attention networks

鉴定(生物学) 计算机科学 功能连接 心理学 神经科学 生物 植物
作者
Ilwoong Baek,Jong Young Namgung,Yeongjun Park,Seongil Jo,Bo‐yong Park
出处
期刊:NeuroImage [Elsevier]
卷期号:311: 121185-121185 被引量:3
标识
DOI:10.1016/j.neuroimage.2025.121185
摘要

Investigation of the functional dynamics of the human brain can help to unveil inherent cognitive systems. In this study, we adopted a graph attention network-based anomaly detection technique to identify abrupt changes in functional time series. We used the resting-state functional magnetic resonance imaging data of 1010 participants from the Human Connectome Project. By applying multivariate time series anomaly detection using the graph attention network approach, we identified three distinct brain states, termed S1, S2, and S3. We further generated low-dimensional representations of functional connectivity (i.e., gradients) for each brain state and compared these gradients among brain states. S1 and S3 exhibited segregated network patterns, whereas S2 displayed more integrated patterns. A topological analysis based on the graph measures revealed that the integrated state (S2) exhibited strong inter-regional connectivity. Further, the two segregated states exhibited distinct patterns, with S1 being more involved in the somatomotor network and S3 being related to higher-order association areas. When we assessed the transitions between brain states, transitions between the low-level sensory (S1) and higher-order default mode states (S3), as well as between the sensory-focused segregated state (S1) and integrated state (S2), were associated with sensory/motor and memory-related tasks. In contrast, the transitions between the integrated (S2) and segregated states with higher centrality in the default mode region (S3) were found to be related to language and reward tasks. These findings indicate that the proposed approach captures changes in individual participant-level brain dynamics, thereby enabling the assessment of inherently dynamic brain systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Silence完成签到 ,获得积分10
刚刚
Levon完成签到 ,获得积分10
1秒前
橙汁发布了新的文献求助10
2秒前
浮浮世世发布了新的文献求助30
5秒前
VirSnorlax完成签到,获得积分10
6秒前
上官若男应助LuckyM采纳,获得10
10秒前
撒大苏打完成签到 ,获得积分10
12秒前
Criminology34应助wangli采纳,获得10
15秒前
传奇3应助单纯的爆米花采纳,获得10
16秒前
19秒前
友好纹完成签到 ,获得积分10
23秒前
善学以致用应助阳光诗珊采纳,获得10
24秒前
30秒前
wangli完成签到,获得积分10
31秒前
32秒前
宗晓曼完成签到 ,获得积分10
34秒前
阳光诗珊发布了新的文献求助10
35秒前
甜蜜发带发布了新的文献求助10
36秒前
38秒前
40秒前
HAL9000发布了新的文献求助10
41秒前
43秒前
lalala发布了新的文献求助10
44秒前
45秒前
LZY完成签到,获得积分10
47秒前
shhoing应助wangli采纳,获得10
48秒前
H_W发布了新的文献求助10
48秒前
萧萧发布了新的文献求助10
48秒前
48秒前
50秒前
JenniferShen发布了新的文献求助10
51秒前
wwwwnr发布了新的文献求助10
53秒前
55秒前
所所应助积极的夏天采纳,获得30
55秒前
NexusExplorer应助蓝从采纳,获得10
56秒前
sun发布了新的文献求助10
57秒前
科研通AI6应助李晓采纳,获得10
58秒前
larsy完成签到,获得积分10
59秒前
阳光萌萌完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558049
求助须知:如何正确求助?哪些是违规求助? 4642999
关于积分的说明 14670327
捐赠科研通 4584494
什么是DOI,文献DOI怎么找? 2514897
邀请新用户注册赠送积分活动 1489039
关于科研通互助平台的介绍 1459678