PHSI-RTDETR: A Lightweight Infrared Small Target Detection Algorithm Based on UAV Aerial Photography

航空摄影 红外线的 计算机视觉 遥感 人工智能 计算机科学 摄影 计算机图形学(图像) 地理 光学 艺术 物理 视觉艺术
作者
Sen Wang,Huiping Jiang,Zhongjie Li,Jixiang Yang,Xuan Ma,Jiamin Chen,Xingqun Tang
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (6): 240-240 被引量:21
标识
DOI:10.3390/drones8060240
摘要

To address the issues of low model accuracy caused by complex ground environments and uneven target scales and high computational complexity in unmanned aerial vehicle (UAV) aerial infrared image target detection, this study proposes a lightweight UAV aerial infrared small target detection algorithm called PHSI-RTDETR. Initially, an improved backbone feature extraction network is designed using the lightweight RPConv-Block module proposed in this paper, which effectively captures small target features, significantly reducing the model complexity and computational burden while improving accuracy. Subsequently, the HiLo attention mechanism is combined with an intra-scale feature interaction module to form an AIFI-HiLo module, which is integrated into a hybrid encoder to enhance the focus of the model on dense targets, reducing the rates of missed and false detections. Moreover, the slimneck-SSFF architecture is introduced as the cross-scale feature fusion architecture of the model, utilizing GSConv and VoVGSCSP modules to enhance adaptability to infrared targets of various scales, producing more semantic information while reducing network computations. Finally, the original GIoU loss is replaced with the Inner-GIoU loss, which uses a scaling factor to control auxiliary bounding boxes to speed up convergence and improve detection accuracy for small targets. The experimental results show that, compared to RT-DETR, PHSI-RTDETR reduces model parameters by 30.55% and floating-point operations by 17.10%. Moreover, detection precision and speed are increased by 3.81% and 13.39%, respectively, and mAP50, impressively, reaches 82.58%, demonstrating the great potential of this model for drone infrared small target detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Jasper应助範範采纳,获得10
2秒前
2秒前
cc完成签到,获得积分10
2秒前
卢俊义完成签到 ,获得积分10
3秒前
生动映波完成签到,获得积分10
3秒前
3秒前
RyanColin完成签到,获得积分10
3秒前
小青椒应助天真的雅绿采纳,获得50
3秒前
4秒前
4秒前
Adalwolf完成签到,获得积分10
4秒前
4秒前
4秒前
沐阳发布了新的文献求助30
4秒前
逝月发布了新的文献求助10
5秒前
Liu发布了新的文献求助10
5秒前
5秒前
庄生完成签到,获得积分20
5秒前
英姑应助小白果果采纳,获得10
5秒前
5秒前
CaptainL完成签到,获得积分10
6秒前
嘤嘤怪完成签到,获得积分10
7秒前
华仔应助kakaka采纳,获得10
7秒前
小二郎应助waitingfor采纳,获得10
8秒前
8秒前
74726发布了新的文献求助10
9秒前
baotai发布了新的文献求助10
9秒前
潇洒平凡完成签到,获得积分20
9秒前
隐形曼青应助张萌采纳,获得10
10秒前
10秒前
星辰大海应助zhu采纳,获得10
10秒前
小李发布了新的文献求助10
11秒前
庄生发布了新的文献求助10
11秒前
11秒前
阿飞大师发布了新的文献求助10
11秒前
11秒前
奋斗金连完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609