PHSI-RTDETR: A Lightweight Infrared Small Target Detection Algorithm Based on UAV Aerial Photography

航空摄影 红外线的 计算机视觉 遥感 人工智能 计算机科学 摄影 计算机图形学(图像) 地理 光学 艺术 物理 视觉艺术
作者
Sen Wang,Huiping Jiang,Zhongjie Li,Jixiang Yang,Xuan Ma,Jiamin Chen,Xingqun Tang
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (6): 240-240 被引量:4
标识
DOI:10.3390/drones8060240
摘要

To address the issues of low model accuracy caused by complex ground environments and uneven target scales and high computational complexity in unmanned aerial vehicle (UAV) aerial infrared image target detection, this study proposes a lightweight UAV aerial infrared small target detection algorithm called PHSI-RTDETR. Initially, an improved backbone feature extraction network is designed using the lightweight RPConv-Block module proposed in this paper, which effectively captures small target features, significantly reducing the model complexity and computational burden while improving accuracy. Subsequently, the HiLo attention mechanism is combined with an intra-scale feature interaction module to form an AIFI-HiLo module, which is integrated into a hybrid encoder to enhance the focus of the model on dense targets, reducing the rates of missed and false detections. Moreover, the slimneck-SSFF architecture is introduced as the cross-scale feature fusion architecture of the model, utilizing GSConv and VoVGSCSP modules to enhance adaptability to infrared targets of various scales, producing more semantic information while reducing network computations. Finally, the original GIoU loss is replaced with the Inner-GIoU loss, which uses a scaling factor to control auxiliary bounding boxes to speed up convergence and improve detection accuracy for small targets. The experimental results show that, compared to RT-DETR, PHSI-RTDETR reduces model parameters by 30.55% and floating-point operations by 17.10%. Moreover, detection precision and speed are increased by 3.81% and 13.39%, respectively, and mAP50, impressively, reaches 82.58%, demonstrating the great potential of this model for drone infrared small target detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小橙发布了新的文献求助10
1秒前
1秒前
今后应助ING采纳,获得10
2秒前
失眠醉易应助Ooo采纳,获得20
2秒前
高兴天空完成签到 ,获得积分20
2秒前
科研通AI5应助研友_Z7O2MZ采纳,获得10
3秒前
土豆土豆发布了新的文献求助10
3秒前
4秒前
李健的小迷弟应助DikL采纳,获得10
5秒前
外向的梦安完成签到,获得积分10
5秒前
5秒前
优秀的莹完成签到,获得积分10
6秒前
在你心上降落完成签到,获得积分10
6秒前
7秒前
HL完成签到,获得积分10
7秒前
7秒前
赘婿应助嫩黄的大纽子花采纳,获得10
8秒前
斯文败类应助风中小鸽子采纳,获得10
8秒前
浸道发布了新的文献求助10
10秒前
喻白发布了新的文献求助10
12秒前
科研通AI5应助完美的妙芹采纳,获得10
12秒前
科研通AI5应助完美的妙芹采纳,获得10
12秒前
13秒前
13秒前
14秒前
黄杰完成签到 ,获得积分10
16秒前
Lucas应助UpUp采纳,获得10
17秒前
可爱的函函应助土豆土豆采纳,获得10
17秒前
2023204306324发布了新的文献求助10
18秒前
小玉米发布了新的文献求助10
19秒前
GG完成签到 ,获得积分10
20秒前
xxxqqq完成签到,获得积分10
21秒前
23秒前
24秒前
shilong.yang完成签到,获得积分10
24秒前
清颜完成签到 ,获得积分10
25秒前
26秒前
风中小鸽子完成签到,获得积分10
26秒前
犹豫的若发布了新的文献求助10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812456
求助须知:如何正确求助?哪些是违规求助? 3356978
关于积分的说明 10384629
捐赠科研通 3074104
什么是DOI,文献DOI怎么找? 1688616
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960