材料科学
光电子学
放大器
跨导
晶体管
碳纳米管
电子线路
弯曲半径
纳米技术
电气工程
CMOS芯片
弯曲
电压
复合材料
工程类
作者
Yuru Wang,Tingzhi Wang,Xiang Li,Ruyi Huang,Guanhua Long,Wanyi Wang,Meiqi Xi,Jiamin Tian,Wangchang Li,Xiaosong Deng,Qibei Gong,Tianshun Bai,Yufan Chen,Hong Liu,Yu Xia,Xuelei Liang,Qing Chen,Lian‐Mao Peng,Youfan Hu
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2024-09-06
卷期号:10 (36)
被引量:2
标识
DOI:10.1126/sciadv.adq6022
摘要
There is increased interest in ultrathin flexible devices with thicknesses of <1 micrometers due to excellent conformability toward advanced laminated bioelectronics. However, because of limitations in materials, device structure, and fabrication methodology, the performance of these ultrathin devices and circuits is insufficient to support higher-level applications. Here, we report high-performance carbon nanotube–based thin-film transistors (TFTs) and differential amplifiers on ultrathin polyimide films with a total thickness of <180 nanometers. A dual-gate structure is introduced to guarantee excellent gate control efficiency and mechanical stability of the ultrathin TFTs, which exhibit high transconductance (8.96 microsiemens per micrometer), high mobility (127 square centimeters per volt per second), and steep subthreshold swing (84 millivolts per decade), and can sustain a bending radius of curvature of <10 micrometers. The differential amplifier achieves the highest gain-bandwidth product (1.83 megahertz) among flexible differential amplifiers, enabling higher-gain amplification of weak signals over an extended frequency spectrum that is demonstrated by amplification of electromyography signals in situ.
科研通智能强力驱动
Strongly Powered by AbleSci AI