Application of Machine Learning Models to Predict Recurrence After Surgical Resection of Nonmetastatic Renal Cell Carcinoma

医学 四分位间距 肾细胞癌 肾切除术 布里氏评分 一致性 肾透明细胞癌 队列 内科学 外科 肿瘤科 泌尿科 机器学习 计算机科学
作者
Z. Khene,Pierre Bigot,N. Doumerc,I. Ouzaïd,R. Boissier,François‐Xavier Nouhaud,Laurence Albigès,Jean‐Christophe Bernhard,Alexandre Ingels,Delphine Borchiellini,Solène Kammerer‐Jacquet,Nathalie Rioux‐Leclercq,Morgan Rouprêt,Oscar Acosta,R. de Crevoisier,Karim Bensalah,G. Pignot,Y. Ahallal,C. Lebâcle,Arnaud Méjean
出处
期刊:European Urology Oncology [Elsevier]
卷期号:6 (3): 323-330 被引量:34
标识
DOI:10.1016/j.euo.2022.07.007
摘要

Predictive tools can be useful for adapting surveillance or including patients in adjuvant trials after surgical resection of nonmetastatic renal cell carcinoma (RCC). Current models have been built using traditional statistical modelling and prespecified variables, which limits their performance. To investigate the performance of machine learning (ML) framework to predict recurrence after RCC surgery and compare them with current validated models. In this observational study, we derived and tested several ML-based models (Random Survival Forests [RSF], Survival Support Vector Machines [S-SVM], and Extreme Gradient Boosting [XG boost]) to predict recurrence of patients who underwent radical or partial nephrectomy for a nonmetastatic RCC, between 2013 and 2020, at 21 French medical centres. The primary end point was disease-free survival. Model discrimination was assessed using the concordance index (c-index), and calibration was assessed using the Brier score. ML models were compared with four conventional prognostic models, using decision curve analysis (DCA). A total of 4067 patients were included in this study (3253 in the development cohort and 814 in the validation cohort). Most tumours (69%) were clear cell RCC, 40% were of high grade (nuclear International Society of Urological Pathology grade 3 or 4), and 24% had necrosis. Of the patients, 4% had nodal involvement. After a median follow-up of 57 mo (interquartile range 29–76), 523 (13%) patients recurred. ML models obtained higher c-index values than conventional models. The RSF yielded the highest c-index values (0.794), followed by S-SVM (c-index 0.784) and XG boost (c-index 0.782). In addition, all models showed good calibration with low integrated Brier scores (all integrated brier scores <0.1). However, we found calibration drift over time for all models, albeit with a smaller magnitude for ML models. Finally, DCA showed an incremental net benefit from all ML models compared with conventional models currently used in practice. Applying ML approaches to predict recurrence following surgical resection of RCC resulted in better prediction than that of current validated models available in clinical practice. However, there is still room for improvement, which may come from the integration of novel biological and/or imaging biomarkers. We found that artificial intelligence algorithms could better predict the risk of recurrence after surgery for a localised kidney cancer. These algorithms may help better select patients who will benefit from medical treatment after surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的巴豆完成签到,获得积分10
1秒前
1秒前
光锥之外发布了新的文献求助20
1秒前
如意歌曲发布了新的文献求助10
1秒前
2秒前
leitao发布了新的文献求助10
2秒前
科研通AI6应助鲜艳的盼芙采纳,获得10
3秒前
gao完成签到 ,获得积分0
3秒前
小卷粉完成签到 ,获得积分10
4秒前
4秒前
4秒前
belssingoo发布了新的文献求助10
5秒前
梵墨完成签到,获得积分10
5秒前
mayucong完成签到,获得积分10
5秒前
76542cu完成签到,获得积分10
5秒前
阔达初南完成签到 ,获得积分10
5秒前
冷静完成签到,获得积分10
5秒前
5秒前
5秒前
听蝉完成签到,获得积分10
5秒前
kkk完成签到,获得积分10
6秒前
7秒前
7秒前
lph完成签到 ,获得积分10
7秒前
8秒前
尘尘发布了新的文献求助10
8秒前
9秒前
在水一方应助飞快的黑猫采纳,获得10
9秒前
小J完成签到,获得积分10
10秒前
热情的戾完成签到,获得积分10
10秒前
彭于彦祖应助kyhhh采纳,获得30
10秒前
姜宇航完成签到,获得积分10
10秒前
咿呀完成签到,获得积分10
11秒前
ZOE应助skier采纳,获得30
11秒前
虚心醉柳发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
英姑应助朴素友安采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427385
求助须知:如何正确求助?哪些是违规求助? 4540851
关于积分的说明 14174756
捐赠科研通 4458886
什么是DOI,文献DOI怎么找? 2445123
邀请新用户注册赠送积分活动 1436251
关于科研通互助平台的介绍 1413758