Mapping Winter Crops in China with Multi-Source Satellite Imagery and Phenology-Based Algorithm

归一化差异植被指数 遥感 环境科学 卫星 中分辨率成像光谱仪 物候学 合成 光谱辐射计 植被(病理学) 卫星图像 时间序列 地理 数学 气候变化 计算机科学 地质学 统计 反射率 人工智能 农学 工程类 病理 航空航天工程 物理 光学 图像(数学) 海洋学 生物 医学
作者
Haifeng Tian,Ni Huang,Zheng Niu,Yuchu Qin,Jie Pei,Jian Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (7): 820-820 被引量:193
标识
DOI:10.3390/rs11070820
摘要

Timely and accurate mapping of winter crop planting areas in China is important for food security assessment at a national level. Time-series of vegetation indices, such as the normalized difference vegetation index (NDVI), are widely used for crop mapping, as they can characterize the growth cycle of crops. However, with the moderate spatial resolution optical imagery acquired by Landsat and Sentinel-2, it is difficult to obtain complete time-series curves for vegetation indices due to the influence of the revisit cycle of the satellite and weather conditions. Therefore, in this study, we propose a method for compositing the multi-temporal NDVI, in order to map winter crop planting areas with the Landsat-7 and -8 and Sentinel-2 optical images. The algorithm composites the multi-temporal NDVI into three key values, according to two time-windows—a period of low NDVI values and a period of high NDVI values—for the winter crops. First, we identify the two time-windows, according to the time-series of the NDVI obtained from daily Moderate Resolution Imaging Spectroradiometer observations. Second, the 30 m spatial resolution multi-temporal NDVI curve, derived from the Landsat-7 and -8 and Sentinel-2 optical images, is composited by selecting the maximal value in the high NDVI value period, and the minimal and median values in the low NDVI value period, using an algorithm of the Google Earth Engine. Third, a decision tree classification method is utilized to perform the winter crop classification at a pixel level. The results indicate that this method is effective for the large-scale mapping of winter crops. In the study area, the area of winter crops in 2018 was determined to be 207,641 km2, with an overall accuracy of 96.22% and a kappa coefficient of 0.93. The method proposed in this paper is expected to contribute to the rapid and accurate mapping of winter crops in large-scale applications and analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
3秒前
曲聋五完成签到 ,获得积分0
3秒前
3秒前
马瑞轩发布了新的文献求助10
6秒前
尊敬的惠发布了新的文献求助10
7秒前
科目三应助橘子采纳,获得30
8秒前
MM完成签到,获得积分10
8秒前
彭于晏应助wwwww采纳,获得10
9秒前
任军向发布了新的文献求助10
9秒前
冰阔罗发布了新的文献求助10
9秒前
大模型应助畅快雁山采纳,获得10
10秒前
700w完成签到 ,获得积分0
11秒前
Jasper应助思思采纳,获得10
11秒前
13秒前
leo发布了新的文献求助10
14秒前
Leslie应助甄不错采纳,获得10
14秒前
ZRQ完成签到,获得积分10
14秒前
zhao完成签到,获得积分10
15秒前
16秒前
Xcc完成签到,获得积分20
18秒前
搜集达人应助自由的冬易采纳,获得10
18秒前
shbeje发布了新的文献求助10
18秒前
清爽的醉香完成签到 ,获得积分10
18秒前
xiu完成签到,获得积分10
20秒前
顺利毕业发布了新的文献求助10
20秒前
小马甲应助冰阔罗采纳,获得10
22秒前
22秒前
无聊的安白关注了科研通微信公众号
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
Xcc发布了新的文献求助10
24秒前
111发布了新的文献求助10
26秒前
风清扬应助leo采纳,获得10
27秒前
不晓天发布了新的文献求助10
28秒前
28秒前
28秒前
28秒前
30秒前
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867305
求助须知:如何正确求助?哪些是违规求助? 3409602
关于积分的说明 10664362
捐赠科研通 3133875
什么是DOI,文献DOI怎么找? 1728505
邀请新用户注册赠送积分活动 833018
科研通“疑难数据库(出版商)”最低求助积分说明 780517