Design of flying robots inspired by the evolution of avian flight

草书的 机器人 鸟类飞行 昆虫飞行 计算机科学 空气动力学 人工智能 工程类 航空航天工程 生态学 生物 捕食
作者
Farzeen Shahid,Jing‐Shan Zhao,Pascal Godefroit
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:233 (23-24): 7669-7686 被引量:6
标识
DOI:10.1177/0954406219861995
摘要

Bionic design of flying robots based on natural models has become a hot topic in mechanical engineering. The research going on in this direction considers that there is a lot to learn from flying animals such as birds, insects, and bats, from walking on the ground to getting enough power to be airborne. To get an efficient design of flying robots, we must better understand the origin of flight. This paper focuses on the review of avian flight and its possible application in the design of flying robots. Different hypotheses have been proposed to tackle the origin and evolution of avian flight from cursorial dinosaurs to modern birds, including the famous ground-up and tree-down theories. During the past decade, discoveries of feathered and winged dinosaurs from Liaoning, China, strongly supported the theory that birds originated from theropod dinosaurs. The transition from running on the ground to maneuver in the sky involves various stages of flights and plumages, which can be now illustrated by several representative paravian dinosaurs from Liaoning. Those fossils provide good research bases for the design of flying robots. Microraptor is one of those important transitional stages in the evolution of flight. This paravian dinosaur is characterized by the presence of pennaceous feathers along both its arms and its legs, but how it could actually fly is still debated. It is of course difficult to evaluate the flight performances of an extinct animal, but aerodynamics of a four-wing robot can be developed to get some knowledge about its flying capacity. Fossil and living flying animals with different morphologies, stability, and control mechanism can be a source of inspiration for designing socially relevant products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NorMal.L发布了新的文献求助10
1秒前
ding应助贝涛采纳,获得10
1秒前
严瑞杰发布了新的文献求助10
1秒前
pass完成签到 ,获得积分10
1秒前
2秒前
嘿嘿发布了新的文献求助10
2秒前
程克勤完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
鸭屎香菜完成签到,获得积分10
3秒前
满林发布了新的文献求助10
3秒前
风筝鱼完成签到 ,获得积分10
3秒前
彭于彦祖应助lvlv采纳,获得10
4秒前
4秒前
赘婿应助忧心的语风采纳,获得10
4秒前
helinahs完成签到 ,获得积分10
4秒前
可爱的函函应助子小孙采纳,获得10
4秒前
桂桂阿云发布了新的文献求助10
4秒前
5秒前
ormita完成签到 ,获得积分10
5秒前
小陆完成签到 ,获得积分10
5秒前
5秒前
Jiayi完成签到,获得积分10
6秒前
冷酷芝完成签到,获得积分10
6秒前
科研通AI5应助健忘的蓉采纳,获得10
7秒前
悠着点儿卷吧完成签到 ,获得积分10
7秒前
7秒前
靳欣妍完成签到,获得积分10
8秒前
在水一方应助Yuanyuan采纳,获得10
8秒前
默默菲音发布了新的文献求助30
8秒前
Coral完成签到,获得积分10
9秒前
zzzq完成签到,获得积分10
9秒前
10秒前
yunxiao完成签到 ,获得积分10
10秒前
嘿嘿完成签到 ,获得积分10
10秒前
www完成签到,获得积分10
10秒前
汉堡包应助煜清清采纳,获得10
10秒前
科研通AI5应助沉静盼易采纳,获得10
10秒前
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813