Robust neural network for wavefront reconstruction using Zernike coefficients

泽尼克多项式 波前 人工神经网络 计算机科学 自适应光学 人工智能 计算机视觉 光学 物理
作者
Adrian Ambrose,Keith Dillon
标识
DOI:10.1117/12.2568034
摘要

Accurately measuring optical aberrations is an important process for several eyecare tasks. Managing the individual variations found in human eyes plays a large role in properly defining these aberrations. A common method to measure optical aberrations uses sensors to locally capture the gradients across a grid of points. This data is used to reconstruct the wavefront resulting from light passing through the eye. In using this method of measurement, typical individual variations such as scarring or eyelashes can lead to shortcomings in the data. These shortcomings can manifest as noise or even areas of entirely missing data. The use of ANN (artificial neural networks) is one way to minimize the effects of these unpredictable deviations. In this work, ANN's were used to determine higher order Zernike coefficients based on coordinates and gradients of the wavefront at those locations. To accomplish this, different ANN architectures were evaluated using sets of ideal inputs to establish the best performing baseline model. This baseline model was then compared with models that were trained under varying conditions created by incorporating deviations from ideal samples. By training neural networks using variable quality data, models can be created to reconstruct wavefronts and account for these conditions. This in turn, can lead to useful applications when measuring for aberrations resulting from the eye.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunjunshu发布了新的文献求助10
1秒前
荆扉完成签到,获得积分10
1秒前
好好好好好发布了新的文献求助100
1秒前
gsamuel发布了新的文献求助10
2秒前
4秒前
Cruffin完成签到 ,获得积分10
5秒前
赘婿应助鲤鱼谷秋采纳,获得10
5秒前
Zewen_Li应助酷酷以蓝采纳,获得10
5秒前
poppy完成签到,获得积分10
6秒前
6秒前
yznfly应助李剑鸿采纳,获得250
6秒前
Hoshiiii完成签到,获得积分10
7秒前
清漪完成签到 ,获得积分10
7秒前
8秒前
舒适行云发布了新的文献求助30
9秒前
洁净百川完成签到 ,获得积分10
11秒前
jetwang发布了新的文献求助10
11秒前
人间发布了新的文献求助10
12秒前
未雨完成签到,获得积分10
13秒前
sunjunshu完成签到,获得积分20
14秒前
隐形曼青应助飞快的尔芙采纳,获得10
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
完美世界应助小飞侠采纳,获得10
21秒前
21秒前
22秒前
poppy关注了科研通微信公众号
23秒前
舒适行云完成签到,获得积分10
23秒前
深情安青应助tigger采纳,获得10
24秒前
Alisa发布了新的文献求助20
24秒前
25秒前
nnmmuu完成签到,获得积分10
26秒前
独特鸽子完成签到,获得积分10
27秒前
付涵发布了新的文献求助10
28秒前
28秒前
28秒前
南风发布了新的文献求助10
32秒前
鲤鱼谷秋发布了新的文献求助10
32秒前
dafan完成签到,获得积分10
34秒前
桐桐应助好好好好好采纳,获得100
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527154
求助须知:如何正确求助?哪些是违规求助? 4616990
关于积分的说明 14556613
捐赠科研通 4555649
什么是DOI,文献DOI怎么找? 2496426
邀请新用户注册赠送积分活动 1476724
关于科研通互助平台的介绍 1448227