已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distinction of surgically resected gastrointestinal stromal tumor by near-infrared hyperspectral imaging

主旨 高光谱成像 间质瘤 离体 间质细胞 病变 医学 人工智能 病理 放射科 体内 计算机科学 生物 生物技术
作者
Daiki Sato,Toshihiro Takamatsu,Masakazu Umezawa,Yuichi Kitagawa,Kosuke Maeda,Naoki Hosokawa,Kyohei Okubo,Masao Kamimura,Tomohiro Kadota,Tetsuo Akimoto,Takahiro Kinoshita,Tomonori Yano,Takeshi Kuwata,Hiroaki Ikematsu,Hiroshi Takemura,Hideo Yokota,Kohei Soga
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1): 21852-21852 被引量:40
标识
DOI:10.1038/s41598-020-79021-7
摘要

Abstract The diagnosis of gastrointestinal stromal tumor (GIST) using conventional endoscopy is difficult because submucosal tumor (SMT) lesions like GIST are covered by a mucosal layer. Near-infrared hyperspectral imaging (NIR-HSI) can obtain optical information from deep inside tissues. However, far less progress has been made in the development of techniques for distinguishing deep lesions like GIST. This study aimed to investigate whether NIR-HSI is suitable for distinguishing deep SMT lesions. In this study, 12 gastric GIST lesions were surgically resected and imaged with an NIR hyperspectral camera from the aspect of the mucosal surface. Thus, the images were obtained ex-vivo. The site of the GIST was defined by a pathologist using the NIR image to prepare training data for normal and GIST regions. A machine learning algorithm, support vector machine, was then used to predict normal and GIST regions. Results were displayed using color-coded regions. Although 7 specimens had a mucosal layer (thickness 0.4–2.5 mm) covering the GIST lesion, NIR-HSI analysis by machine learning showed normal and GIST regions as color-coded areas. The specificity, sensitivity, and accuracy of the results were 73.0%, 91.3%, and 86.1%, respectively. The study suggests that NIR-HSI analysis may potentially help distinguish deep lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃巧克力的草莓完成签到 ,获得积分10
1秒前
1秒前
123123完成签到 ,获得积分10
1秒前
曾水完成签到,获得积分10
2秒前
沉默的谷丝完成签到,获得积分10
3秒前
彭栋完成签到,获得积分10
3秒前
曾水发布了新的文献求助30
6秒前
zyz发布了新的文献求助10
7秒前
汉堡包应助aabb采纳,获得10
7秒前
silence完成签到 ,获得积分10
7秒前
123完成签到,获得积分10
7秒前
xiuxiu完成签到 ,获得积分10
7秒前
123完成签到 ,获得积分10
9秒前
lily应助cc采纳,获得30
10秒前
16秒前
阿烨完成签到,获得积分10
17秒前
yoyo完成签到 ,获得积分10
17秒前
17秒前
19秒前
baosong完成签到,获得积分20
20秒前
LHC发布了新的文献求助10
20秒前
20秒前
自由盼夏完成签到 ,获得积分10
22秒前
24秒前
传奇3应助baosong采纳,获得10
27秒前
bo完成签到 ,获得积分10
27秒前
tong完成签到 ,获得积分10
28秒前
明时完成签到,获得积分10
28秒前
28秒前
LHC完成签到,获得积分10
29秒前
爆米花应助叶楼采纳,获得10
31秒前
我是老大应助shy采纳,获得10
33秒前
Han完成签到 ,获得积分10
34秒前
ZYH完成签到,获得积分10
35秒前
可乐完成签到,获得积分20
36秒前
43秒前
FLY完成签到,获得积分10
45秒前
45秒前
888完成签到 ,获得积分10
46秒前
大豪完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554581
求助须知:如何正确求助?哪些是违规求助? 4639228
关于积分的说明 14655596
捐赠科研通 4581039
什么是DOI,文献DOI怎么找? 2512605
邀请新用户注册赠送积分活动 1487362
关于科研通互助平台的介绍 1458218