Meat quality classification based on color intensity measurement method

强度(物理) 频道(广播) 数学 特征(语言学) 人工智能 统计 计算机视觉 计算机科学 光学 电信 物理 语言学 哲学
作者
Titin Yulianti,Afri Yudamson,Hery Dian Septama,Sri Ratna Sulistiyanti,F.X.Arinto Setiawan,Mareli Telaumbanua
标识
DOI:10.1109/isesd.2016.7886727
摘要

The fresh and defective beef identification by consumers is subjectively through visual observation. However, identifying beef quality manually has disadvantage, there is human visual limitations, differences in human perception in assessing the quality of an object, and ability of each individual knowledge are different. Therefore, we need a technological device that can be applied to identify the quality of beef that can be used by people. The aim of this research is measuring the percentage of color intensity average from R, G, and B channel. The fresh and defective beef is identified using feature of the beef image. That feature is percentages of intensity average value from R (red), G (green), and B (blue) channel. The optimal feature is gotten based on the percentage values. The feature is gotten by using image processing method. The percentage of R channel intensity average value is defined, which can be used to classify the fresh and defective beef. The percentage of R channel intensity is consecutively decrease on every 4 hours. It is shown on each beef sample. The R channel of the fresh image has higher percentage of intensity average value than the defective beef. The fresh beef has 56.38% to 66.33% of the R channel intensity average. whereas the defective beef has 37.76% to 51.71% of the R channel intensity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助炫炫炫采纳,获得10
2秒前
大气黑米发布了新的文献求助10
2秒前
campus发布了新的文献求助10
4秒前
今后应助shuyu采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
淅淅沥沥发布了新的文献求助10
9秒前
小杭76应助Whan采纳,获得10
9秒前
11秒前
12秒前
12秒前
zzx完成签到,获得积分10
13秒前
13秒前
科研小白发布了新的文献求助10
14秒前
YUJIALING发布了新的文献求助10
14秒前
14秒前
14秒前
pluto应助月蚀六花采纳,获得10
15秒前
龙溪发布了新的文献求助10
15秒前
pluto应助abc采纳,获得10
16秒前
16秒前
16秒前
彭于晏应助zby采纳,获得10
16秒前
17秒前
17秒前
韶安萱发布了新的文献求助10
17秒前
Wolfe完成签到,获得积分10
18秒前
wfs完成签到,获得积分10
18秒前
子车浩宇发布了新的文献求助10
18秒前
Owen应助4XXXX采纳,获得10
19秒前
19秒前
HOLLOW发布了新的文献求助10
19秒前
nannan发布了新的文献求助10
19秒前
kk完成签到,获得积分10
20秒前
让我发论文完成签到,获得积分10
21秒前
21秒前
陶醉怀梦完成签到 ,获得积分10
21秒前
PLAGH221发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156702
求助须知:如何正确求助?哪些是违规求助? 4352149
关于积分的说明 13551081
捐赠科研通 4195288
什么是DOI,文献DOI怎么找? 2301007
邀请新用户注册赠送积分活动 1300871
关于科研通互助平台的介绍 1246021