Discovery of depression-associated factors among childhood trauma victims from a large sample size: Using machine learning and network analysis

焦虑 心理干预 萧条(经济学) 临床心理学 心理学 逻辑回归 精神科 因果关系(物理学) 流行病学 医学 内科学 量子力学 物理 宏观经济学 经济
作者
Yu Jin,Shicun Xu,Zhixian Shao,Xianyu Luo,Yinzhe Wang,Yi Yu,Yuanyuan Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:345: 300-310 被引量:7
标识
DOI:10.1016/j.jad.2023.10.101
摘要

Experiences of childhood trauma (CT) would lead to serious mental problems, especially depression. Therefore, it becomes crucial to identify influential factors related to depression and explore their associations. The objectives were to 1) identify critical depression-related factors using the extreme gradient boosting (XGBoost) method from a large-scale survey data; 2) explore associations between these factors for targeted interventions and treatments.A large-scale epidemiological study covering 63 universities was conducted in Jilin Province, China. The XGBoost model was trained and tested to classify young adults with CT experiences who had or did not have depression (N = 27,671). The essential factors were selected by SHapley Additive exPlanations (SHAP) value. Multiple logistic regression analyses were conducted for validation. The associations between these depression-related factors were further explored using network analysis.The XGBoost model selected the top 10 features associated with depression with satisfactory performance (AUC = 0.91; sensitivity = 0.88 and specificity = 0.76). These factors significantly differed between depression and non-depression groups (p < 0.001). There are strong positive associations between anxiety and obsessive-compulsive disorder (OCD), anxiety and post-traumatic stress disorder (PTSD), social anxiety disorder (SAD) and appearance anxiety, and negative associations between sleep quality and anxiety, sleep quality and PTSD among CT participants with depression.The cross-sectional design cannot draw causality, and biases in self-report measurements cannot be ignored.XGBoost model and network analysis were useful methods for discovering and understanding depression-related factors in this epidemiological study. Moreover, these essential factors could offer insights into future interventions and treatments for depressed young adults with CT experiences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的依风完成签到,获得积分10
5秒前
5秒前
德坚发布了新的文献求助10
5秒前
传奇3应助等待盼雁采纳,获得10
6秒前
依依完成签到,获得积分10
6秒前
10秒前
达不溜qp发布了新的文献求助10
15秒前
16秒前
可爱的函函应助forge采纳,获得10
17秒前
18秒前
李小强完成签到,获得积分10
18秒前
summer完成签到 ,获得积分10
19秒前
等待盼雁发布了新的文献求助10
20秒前
闪闪落雁完成签到,获得积分10
23秒前
24秒前
刘敏小七给刘敏小七的求助进行了留言
24秒前
老奈发布了新的文献求助10
25秒前
车到山前必有路女士完成签到,获得积分10
26秒前
forge发布了新的文献求助10
28秒前
28秒前
CipherSage应助科研通管家采纳,获得10
32秒前
慕青应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
慕青应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
思源应助科研通管家采纳,获得10
32秒前
Hello应助科研通管家采纳,获得30
32秒前
科研助手6应助科研通管家采纳,获得10
32秒前
科研助手6应助科研通管家采纳,获得10
32秒前
32秒前
FashionBoy应助小金骑士采纳,获得10
32秒前
隐形曼青应助科研通管家采纳,获得10
32秒前
33秒前
Done应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
33秒前
淘宝叮咚发布了新的文献求助30
35秒前
汉堡包应助forge采纳,获得10
36秒前
JamesPei应助老奈采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215332
捐赠科研通 3038846
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339