Unlocking New Insights for Electrocatalyst Design: A Unique Data Science Workflow Leveraging Internet-Sourced Big Data

工作流程 计算机科学 大数据 数据科学 互联网 人工智能 万维网 数据挖掘 数据库
作者
Rui Ding,Xuebin Wang,Aidong Tan,Jia Li,Jianguo Liu
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (20): 13267-13281 被引量:9
标识
DOI:10.1021/acscatal.3c01914
摘要

In the past few decades, numerous electrocatalyst design studies have been reported. Although machine learning (ML) has recently emerged as a more efficient alternative to traditional trial-and-error methods, the cost of preparing training data remains high. Inspired by the success of models like ChatGPT, which learns from a vast corpus of text data collected from the internet, we developed a data science workflow initiated by collecting datasets via a highly automated web crawler. We trained artificial neural network models with acceptable accuracy in predicting electrocatalytic performances and used black-box interpretation methods to mine universal material design knowledge, verifying model reliabilities with data collected from as many as 5277 publications. Thoughtfully, we introduced transfer learning (TL) to address the data scarcity issue for electrocatalysts in neutral electrolytes, with fewer available publications. TL could provide reliable optimization advice even in unknown areas, with knowledge transferred from similar fields. This study examined the patterns of numerous previous electrocatalysts from a data science perspective and proposed a universal ML paradigm to assist in the design of unique materials based on transferable big scientific data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助无私的振家采纳,获得10
1秒前
彭于晏应助鲤鱼醉波采纳,获得10
1秒前
琳琳发布了新的文献求助20
2秒前
simple发布了新的文献求助10
2秒前
3秒前
领导范儿应助残忆采纳,获得10
3秒前
hui发布了新的文献求助10
4秒前
wanci应助倒背如流圆周率采纳,获得10
4秒前
华仔应助怕黑的丝袜采纳,获得10
5秒前
憨涵发布了新的文献求助10
5秒前
领导范儿应助stoner采纳,获得10
5秒前
爱笑的觅双给爱笑的觅双的求助进行了留言
6秒前
再见梧桐发布了新的文献求助10
6秒前
lhy完成签到,获得积分10
7秒前
8秒前
Hello应助向连虎采纳,获得10
8秒前
donghaili完成签到,获得积分10
8秒前
天天快乐应助unique采纳,获得10
8秒前
9秒前
烟花应助feilei采纳,获得10
9秒前
9秒前
工力所发布了新的文献求助30
9秒前
彭于晏应助沙青亦采纳,获得10
9秒前
9秒前
Cccc小懒完成签到,获得积分10
9秒前
jjh发布了新的文献求助10
10秒前
苹果煎饼完成签到,获得积分10
11秒前
帅气的乘云完成签到,获得积分10
11秒前
12秒前
12秒前
无我发布了新的文献求助10
12秒前
13秒前
先一发布了新的文献求助10
13秒前
123完成签到,获得积分10
13秒前
lisier完成签到,获得积分10
13秒前
雅蕊完成签到,获得积分10
13秒前
摸鱼仙人完成签到,获得积分10
13秒前
宋佳完成签到,获得积分10
13秒前
14秒前
hh发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790087
求助须知:如何正确求助?哪些是违规求助? 3334781
关于积分的说明 10272224
捐赠科研通 3051278
什么是DOI,文献DOI怎么找? 1674537
邀请新用户注册赠送积分活动 802651
科研通“疑难数据库(出版商)”最低求助积分说明 760828