Tire Defect Detection by Dual-Domain Adaptation-Based Transfer Learning Strategy

判别式 计算机科学 人工智能 特征(语言学) 条件概率分布 背景(考古学) 模式识别(心理学) 学习迁移 领域(数学分析) 边际分布 算法 机器学习 数学 统计 古生物学 数学分析 哲学 语言学 随机变量 生物
作者
Yulong Zhang,Yilin Wang,Zhi-Qiang Jiang,Li Zheng,Jinshui Chen,Jiangang Lu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (19): 18804-18814 被引量:3
标识
DOI:10.1109/jsen.2022.3201201
摘要

In tire defect detection, an X-ray image sensor is utilized to collect samples, upon which automatic defect detection methods are constructed. The performance of existing defect detection methods is reduced significantly when working condition shifts. Fortunately, domain adaptation can address this domain shift problem effectively. However, previous methods only align the marginal distribution or conditional distribution, while ignoring the unified adaptation of the two distributions, and may result in an unsatisfactory transfer effect. To this end, this article proposes a dual-domain adaptation model, which harnesses the adaptation of global marginal distribution and fine-grained conditional distribution simultaneously. Specifically, to learn the feature with the consideration of intraclass compact and interclass discriminative, the relative importance of marginal distribution and conditional distribution is measured by a dynamic adaptive factor. In addition, a multihead self-attention (MSA) mechanism is designed in the feature extractor for global context modeling. To evaluate the effectiveness of the proposed method, the tire defect detection task on five kinds of familiar defects, namely slack, bend, overlap, impurity, and bubble, was constructed. Compared with other existing domain adaptation models, the proposed model can achieve 96.39% detect detection accuracy. The experimental results demonstrate the effectiveness of the proposed method in tire defect detection under the domain shift.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟迟发布了新的文献求助20
1秒前
Three完成签到,获得积分10
1秒前
chen01hang发布了新的文献求助30
1秒前
2秒前
充电宝应助DG采纳,获得10
2秒前
真理完成签到,获得积分10
4秒前
普拉亚发布了新的文献求助10
4秒前
假面绅士发布了新的文献求助10
5秒前
5秒前
5秒前
Akim应助咩咩咩咩采纳,获得10
5秒前
小二郎应助Tsuki采纳,获得10
5秒前
6秒前
6秒前
6秒前
田木封完成签到,获得积分10
7秒前
7秒前
NexusExplorer应助安芳采纳,获得10
8秒前
小白发布了新的文献求助10
9秒前
ruarua发布了新的文献求助10
10秒前
金子悠月完成签到,获得积分10
10秒前
满当当发布了新的文献求助10
10秒前
yang发布了新的文献求助10
10秒前
小于发布了新的文献求助10
10秒前
小乐发布了新的文献求助10
11秒前
DG完成签到,获得积分10
11秒前
11秒前
哈喽发布了新的文献求助10
11秒前
LC2228发布了新的文献求助30
12秒前
泡椒完成签到,获得积分10
13秒前
DG发布了新的文献求助10
14秒前
14秒前
14秒前
搞怪藏今发布了新的文献求助10
14秒前
15秒前
15秒前
通关完成签到 ,获得积分10
15秒前
15秒前
15秒前
侯安琪完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473665
求助须知:如何正确求助?哪些是违规求助? 4575821
关于积分的说明 14354677
捐赠科研通 4503392
什么是DOI,文献DOI怎么找? 2467604
邀请新用户注册赠送积分活动 1455446
关于科研通互助平台的介绍 1429459