Peatland pixel-level classification via multispectral, multiresolution and multisensor data using convolutional neural network

多光谱图像 卷积神经网络 计算机科学 像素 遥感 人工智能 模式识别(心理学) 多光谱模式识别 地质学
作者
Luca Zelioli,Fahimeh Farahnakian,Maarit Middleton,Timo Pitkänen,Sakari Tuominen,Paavo Nevalainen,Jonne Pohjankukka,Jukka Heikkonen
出处
期刊:Ecological Informatics [Elsevier]
卷期号:90: 103233-103233
标识
DOI:10.1016/j.ecoinf.2025.103233
摘要

High-resolution mapping of boreal peatlands is crucial for greenhouse gas inventories, ecological monitoring, and sustainable land management. However, accurately classifying peatland ecotypes at large scales remains challenging due to the complex phenological changes, dense tree canopies, water table level variations, and the mosaiced structure of vegetation communities typical of these landscapes. To address these challenges, we propose a novel multi-modal convolutional neural network (CNN) architecture designed specifically for pixel-level peatland classification. The motivation behind this research stems from the need for improved accuracy in peatland site type and fertility level mapping, which is vital for effective environmental decision-making. The core strategy of our method involves a late fusion architecture that seamlessly integrates multi-source remote sensing (RS) data, including optical imagery, synthetic aperture radar (SAR), airborne laser scanning (ALS), and multi-source national forest inventory (MS-NFI) datasets. These diverse data sources, characterized by different spatial resolutions, are fused to preserve their spatial integrity, enabling richer feature extraction for classification tasks. Additionally, a sliding-window approach is applied to manage multi-resolution datasets, enhancing pixel-wise classification by preserving spatial and contextual relationships. We evaluated the proposed architecture across three diverse peatland zones in Finland, demonstrating its capability to generalize across varying ecological conditions. Experimental results indicate classification accuracies for peatland site types and fertility levels ranging from 36.6% to 55.0%, highlighting the effectiveness of our approach even with limited labeled training samples. Canopy height models, Sentinel-2 bands, and Sentinel-1 bands emerged as the most influential data sources for accurate classification. Our findings underscore the potential of integrating multi-source RS data with advanced CNN architectures for large-scale peatland mapping. Future work will focus on incorporating LiDAR-derived vegetation structural indices, hyperspectral RS data, and expanding the training dataset to further enhance classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李纪龙完成签到,获得积分20
刚刚
刚刚
汽水121856完成签到,获得积分20
1秒前
1秒前
Sylvia完成签到 ,获得积分10
1秒前
陆柒白完成签到,获得积分10
1秒前
小立发布了新的文献求助10
2秒前
2秒前
2秒前
wyd发布了新的文献求助10
2秒前
香蕉觅云应助yyq0927采纳,获得10
3秒前
科研小卡拉米6完成签到,获得积分10
3秒前
3秒前
调皮的涵易完成签到,获得积分10
3秒前
Ava应助正直胡萝卜采纳,获得10
4秒前
独徙发布了新的文献求助10
4秒前
NeoH完成签到,获得积分10
4秒前
4秒前
含笑发布了新的文献求助10
4秒前
情怀应助duan采纳,获得10
5秒前
5秒前
JamesPei应助虚幻的冷松采纳,获得10
5秒前
没有脑袋完成签到,获得积分10
5秒前
小白小王完成签到,获得积分10
6秒前
fangyuan完成签到,获得积分10
6秒前
淡定元珊完成签到,获得积分10
7秒前
清秀的百招完成签到,获得积分10
8秒前
乐乐应助跳跃的静曼采纳,获得10
8秒前
8秒前
8秒前
9秒前
10秒前
张鱼小源子完成签到,获得积分10
10秒前
10秒前
Nevermind完成签到,获得积分10
10秒前
复方蛋酥卷完成签到,获得积分10
10秒前
2531020323关注了科研通微信公众号
10秒前
酷波er应助Elite采纳,获得10
11秒前
WizBLue发布了新的文献求助10
11秒前
xlgforever完成签到,获得积分10
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446527
求助须知:如何正确求助?哪些是违规求助? 4555528
关于积分的说明 14252304
捐赠科研通 4477993
什么是DOI,文献DOI怎么找? 2453459
邀请新用户注册赠送积分活动 1444257
关于科研通互助平台的介绍 1420353