清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Observing Li Nucleation at the Li Metal–Solid Electrolyte Interface in All-Solid-State Batteries

成核 材料科学 电解质 固态 金属锂 金属 接口(物质) 纳米技术 快离子导体 化学工程 无机化学 化学 物理化学 冶金 电极 复合材料 有机化学 毛细管作用 工程类 毛细管数
作者
Yun An,Taiping Hu,Quanquan Pang,Shenzhen Xu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (14): 14262-14271 被引量:9
标识
DOI:10.1021/acsnano.5c00816
摘要

Benefiting from the significantly improved energy density and safety, all-solid-state lithium batteries (ASSLBs) are considered to be one of the most promising next-generation energy technologies. Their practical applications, however, are strongly impeded by Li dendrite formation. Despite this recognized challenge, a comprehensive understanding of the Li dendrite nucleation and formation mechanism remains elusive. In particular, the initial locations of Li dendrite formation are still ambiguous: do Li clusters form directly at the Li anode surface, inside the bulk solid electrolyte (SE), or within the solid-electrolyte interphase (SEI)? Here, based on the deep-potential molecular dynamics simulations combined with enhanced sampling techniques, we investigate the atomic-level mechanism of Li cluster nucleation and formation at the Li anode/SE interface. We observe that an isolated Li cluster initially forms inside the SEI between the Li6PS5Cl SE and the Li metal anode, located ∼1 nm away from the Li anode/SEI boundary. The local electronic structure of the spontaneously formed SEI is found to be a key factor enabling the Li cluster formation within the SEI, in which a significantly decreased band gap could facilitate electronic conduction through the SEI and reduce Li+ ions to metallic Li atoms therein. Our work provides atomic-level insights into Li-dendrite nucleation at anode/SE interfaces in ASSLBs and could guide future design for developing Li-dendrite-inhibiting strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234hai完成签到 ,获得积分10
17秒前
digger2023完成签到 ,获得积分10
18秒前
松松完成签到 ,获得积分10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
科研通AI6应助开朗雅霜采纳,获得10
1分钟前
kiterunner发布了新的文献求助10
2分钟前
3分钟前
Pattis发布了新的文献求助10
3分钟前
qcy72完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
狼来了aas完成签到,获得积分10
4分钟前
long完成签到 ,获得积分10
4分钟前
淞淞于我完成签到 ,获得积分10
5分钟前
明朗完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
不安溪灵完成签到,获得积分10
6分钟前
jj发布了新的文献求助30
6分钟前
6分钟前
开放凝珍完成签到 ,获得积分10
6分钟前
6分钟前
随心所欲完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
子平完成签到 ,获得积分0
9分钟前
盖景浩应助科研通管家采纳,获得150
9分钟前
Yoanna应助紫熊采纳,获得20
9分钟前
crystaler完成签到 ,获得积分10
9分钟前
bono完成签到 ,获得积分10
9分钟前
达克赛德完成签到 ,获得积分10
9分钟前
9分钟前
Bamboooo发布了新的文献求助10
9分钟前
whqpeter完成签到,获得积分10
9分钟前
NexusExplorer应助whqpeter采纳,获得10
10分钟前
天天快乐应助Bamboooo采纳,获得10
10分钟前
10分钟前
10分钟前
whqpeter发布了新的文献求助10
10分钟前
量子星尘发布了新的文献求助10
10分钟前
开朗雅霜发布了新的文献求助10
10分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5138589
求助须知:如何正确求助?哪些是违规求助? 4337894
关于积分的说明 13512016
捐赠科研通 4176837
什么是DOI,文献DOI怎么找? 2290452
邀请新用户注册赠送积分活动 1290914
关于科研通互助平台的介绍 1232920