已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of CXCR4 inhibitory activity in natural compounds using cheminformatics-guided machine learning algorithms

化学信息学 鉴定(生物学) 算法 计算机科学 机器学习 计算生物学 化学 生物信息学 人工智能 生物 植物
作者
Rahul Tripathi,Pravir Kumar
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:17
标识
DOI:10.1093/intbio/zyaf004
摘要

Abstract Neurodegenerative disorders are characterised by progressive damage to neurons that leads to cognitive impairment and motor dysfunction. Current treatment options focus only on symptom management and palliative care, without addressing their root cause. In our previous study, we reported the upregulation of the CXC motif chemokine receptor 4 (CXCR4), in Alzheimer’s disease (ad) and Parkinson’s disease (PD). We reached this conclusion by analysing gene expression patterns of ad and PD patients, compared to healthy individuals of similar age. We used RNA sequencing data from Gene Expression Omnibus to carry out this analysis. Herein, we aim to identify natural compounds that have potential inhibitory activity against CXCR4 through cheminformatics-guided machine learning, to aid drug discovery for neurodegenerative disorders, especially ad and PD. Natural compounds are gaining prominence in the treatment of neurodegenerative disorders due to their biocompatibility and potential neuroprotective properties, including their ability to modulate CXCR4 expression. Recent advances in artificial intelligence (AI) and machine learning (ML) algorithms have opened new avenues for drug discovery research across various therapeutic areas, including neurodegenerative disorders. We aim to produce an ML model using cheminformatics-guided machine learning algorithms using data of compounds with known CXCR4 activity, retrieved from the Binding Database, to analyse various physicochemical attributes of natural compounds obtained from the COCONUT Database and predict their inhibitory activity against CXCR4. Insight Box This work extends our previous study published in Integrative Biology (DOI: 10.1093/intbio/zyad012). We aim to demonstrate the effectiveness of AI and ML in identifying potential treatment options for Alzheimer’s and Parkinson’s diseases. By analysing vast amounts of data and identifying patterns that may not be apparent to human researchers, AI-powered systems can provide valuable insight into potential treatment options that may have been overlooked through traditional research methods. Our study underscores the significance of interdisciplinary collaboration between computational and experimental scientists in drug discovery and in developing a robust pipeline to identify potential leads for drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leena完成签到 ,获得积分10
1秒前
Lv完成签到 ,获得积分10
1秒前
667788发布了新的文献求助10
1秒前
云霞完成签到 ,获得积分10
3秒前
星点完成签到 ,获得积分10
3秒前
小文cremen完成签到 ,获得积分10
4秒前
半枝桃完成签到 ,获得积分10
4秒前
6秒前
华仔应助dfhh采纳,获得10
6秒前
可爱的函函应助林苏采纳,获得10
7秒前
玖月完成签到 ,获得积分10
7秒前
ooouiia完成签到 ,获得积分10
7秒前
iShine完成签到 ,获得积分10
8秒前
寒战完成签到 ,获得积分10
8秒前
机智若云完成签到,获得积分10
9秒前
壮观以松完成签到,获得积分10
9秒前
聪慧不二完成签到 ,获得积分10
9秒前
完美梨愁完成签到 ,获得积分10
9秒前
朴素飞薇完成签到 ,获得积分10
9秒前
四十四次日落完成签到 ,获得积分10
10秒前
RYYYYYYY233完成签到 ,获得积分10
11秒前
fusheng完成签到 ,获得积分10
12秒前
有丝分裂吉完成签到,获得积分10
12秒前
礼岁岁完成签到 ,获得积分10
12秒前
jcl完成签到,获得积分10
13秒前
hahahan完成签到 ,获得积分10
13秒前
壮观以松发布了新的文献求助10
13秒前
春天的粥完成签到 ,获得积分10
13秒前
一只熊完成签到 ,获得积分10
13秒前
13秒前
充电宝应助科研通管家采纳,获得10
14秒前
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
老师心腹大患完成签到,获得积分10
15秒前
monair完成签到 ,获得积分10
15秒前
咖啡味椰果完成签到 ,获得积分10
15秒前
qianzhihe完成签到,获得积分10
15秒前
云淡风轻一宝完成签到,获得积分10
15秒前
淡定的健柏完成签到 ,获得积分10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343765
关于积分的说明 10317521
捐赠科研通 3060512
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806711
科研通“疑难数据库(出版商)”最低求助积分说明 763295

今日热心研友

WaitP
1
桥豆麻袋
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10