Multimodal cross enhanced fusion network for diagnosis of Alzheimer’s disease and subjective memory complaints

判别式 卷积神经网络 深度学习 可解释性 计算机科学 人工智能 机器学习 模式识别(心理学)
作者
Yilin Leng,Wenju Cui,Yunsong Peng,Caiying Yan,Yuzhu Cao,Zhuangzhi Yan,Shuangqing Chen,Xi Jiang,Jian Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106788-106788 被引量:22
标识
DOI:10.1016/j.compbiomed.2023.106788
摘要

Deep learning methods using multimodal imagings have been proposed for the diagnosis of Alzheimer's disease (AD) and its early stages (SMC, subjective memory complaints), which may help to slow the progression of the disease through early intervention. However, current fusion methods for multimodal imagings are generally coarse and may lead to suboptimal results through the use of shared extractors or simple downscaling stitching. Another issue with diagnosing brain diseases is that they often affect multiple areas of the brain, making it important to consider potential connections throughout the brain. However, traditional convolutional neural networks (CNNs) may struggle with this issue due to their limited local receptive fields. To address this, many researchers have turned to transformer networks, which can provide global information about the brain but can be computationally intensive and perform poorly on small datasets. In this work, we propose a novel lightweight network called MENet that adaptively recalibrates the multiscale long-range receptive field to localize discriminative brain regions in a computationally efficient manner. Based on this, the network extracts the intensity and location responses between structural magnetic resonance imagings (sMRI) and 18-Fluoro-Deoxy-Glucose Positron Emission computed Tomography (FDG-PET) as an enhancement fusion for AD and SMC diagnosis. Our method is evaluated on the publicly available ADNI datasets and achieves 97.67% accuracy in AD diagnosis tasks and 81.63% accuracy in SMC diagnosis tasks using sMRI and FDG-PET. These results achieve state-of-the-art (SOTA) performance in both tasks. To the best of our knowledge, this is one of the first deep learning research methods for SMC diagnosis with FDG-PET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳亦云完成签到 ,获得积分10
刚刚
1秒前
萨芬发布了新的文献求助10
1秒前
代111发布了新的文献求助10
1秒前
大王叫我来巡山啊完成签到,获得积分10
2秒前
2秒前
lemon完成签到,获得积分10
2秒前
活力的冬云完成签到,获得积分10
2秒前
潘红君完成签到,获得积分20
2秒前
wwww发布了新的文献求助10
2秒前
陈佳梦完成签到,获得积分10
3秒前
3秒前
共享精神应助fjx采纳,获得10
3秒前
LF-Scie应助杨枝甘露采纳,获得10
4秒前
小竹子发布了新的文献求助10
4秒前
整齐的冰珍完成签到,获得积分10
4秒前
诺言完成签到,获得积分10
4秒前
NexusExplorer应助迷人芙蓉采纳,获得10
5秒前
明理凝阳完成签到,获得积分10
5秒前
5秒前
不吃鸡蛋完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
珑仔完成签到,获得积分10
6秒前
PPone1完成签到,获得积分10
6秒前
duduying完成签到,获得积分10
7秒前
7秒前
YAOYAO完成签到,获得积分0
7秒前
浮游应助zero采纳,获得10
8秒前
乐乐应助爱你哦采纳,获得10
8秒前
8秒前
王木木发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
小疯发布了新的文献求助10
9秒前
杜瑞豪发布了新的文献求助30
10秒前
10秒前
杨小羊发布了新的文献求助10
11秒前
烦烦完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427734
求助须知:如何正确求助?哪些是违规求助? 4541470
关于积分的说明 14177378
捐赠科研通 4459139
什么是DOI,文献DOI怎么找? 2445250
邀请新用户注册赠送积分活动 1436438
关于科研通互助平台的介绍 1413797