清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multimodal cross enhanced fusion network for diagnosis of Alzheimer’s disease and subjective memory complaints

判别式 卷积神经网络 深度学习 可解释性 计算机科学 人工智能 机器学习 模式识别(心理学)
作者
Yilin Leng,Wenju Cui,Yunsong Peng,Caiying Yan,Yuzhu Cao,Zhuangzhi Yan,Shuangqing Chen,Xi Jiang,Jian Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106788-106788 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.106788
摘要

Deep learning methods using multimodal imagings have been proposed for the diagnosis of Alzheimer's disease (AD) and its early stages (SMC, subjective memory complaints), which may help to slow the progression of the disease through early intervention. However, current fusion methods for multimodal imagings are generally coarse and may lead to suboptimal results through the use of shared extractors or simple downscaling stitching. Another issue with diagnosing brain diseases is that they often affect multiple areas of the brain, making it important to consider potential connections throughout the brain. However, traditional convolutional neural networks (CNNs) may struggle with this issue due to their limited local receptive fields. To address this, many researchers have turned to transformer networks, which can provide global information about the brain but can be computationally intensive and perform poorly on small datasets. In this work, we propose a novel lightweight network called MENet that adaptively recalibrates the multiscale long-range receptive field to localize discriminative brain regions in a computationally efficient manner. Based on this, the network extracts the intensity and location responses between structural magnetic resonance imagings (sMRI) and 18-Fluoro-Deoxy-Glucose Positron Emission computed Tomography (FDG-PET) as an enhancement fusion for AD and SMC diagnosis. Our method is evaluated on the publicly available ADNI datasets and achieves 97.67% accuracy in AD diagnosis tasks and 81.63% accuracy in SMC diagnosis tasks using sMRI and FDG-PET. These results achieve state-of-the-art (SOTA) performance in both tasks. To the best of our knowledge, this is one of the first deep learning research methods for SMC diagnosis with FDG-PET.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
zhentg发布了新的文献求助10
9秒前
稻子完成签到 ,获得积分10
23秒前
clock完成签到 ,获得积分10
48秒前
fishss完成签到 ,获得积分10
1分钟前
Kevin发布了新的文献求助10
1分钟前
开拖拉机的医学僧完成签到 ,获得积分10
1分钟前
1分钟前
小锋完成签到 ,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
有终完成签到 ,获得积分10
1分钟前
annie完成签到,获得积分10
1分钟前
彩色嚣完成签到 ,获得积分10
2分钟前
uouuo完成签到 ,获得积分10
2分钟前
可爱的函函应助001采纳,获得10
2分钟前
KINGAZX完成签到 ,获得积分10
2分钟前
3分钟前
001发布了新的文献求助10
3分钟前
LJ_2完成签到 ,获得积分10
3分钟前
方琼燕完成签到 ,获得积分10
3分钟前
午后狂睡完成签到 ,获得积分10
3分钟前
creep2020完成签到,获得积分10
3分钟前
3分钟前
斯文的傲珊完成签到,获得积分10
4分钟前
4分钟前
白菜完成签到 ,获得积分10
4分钟前
乐观海云完成签到 ,获得积分10
4分钟前
huanghe完成签到,获得积分10
4分钟前
joe完成签到 ,获得积分0
4分钟前
钉钉完成签到 ,获得积分10
4分钟前
annie发布了新的文献求助10
5分钟前
FIN关闭了FIN文献求助
5分钟前
我是125完成签到,获得积分10
5分钟前
无情夏寒完成签到 ,获得积分10
5分钟前
星辰大海应助001采纳,获得10
6分钟前
西山菩提完成签到,获得积分10
6分钟前
葛怀锐完成签到 ,获得积分10
6分钟前
燕晓啸完成签到 ,获得积分0
6分钟前
一一一多完成签到 ,获得积分10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340645
关于积分的说明 10300905
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626