已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-spectral fusion and self-attention mechanisms for Gentiana origin identification via near-infrared spectroscopy

龙胆属 融合 鉴定(生物学) 红外光谱学 光谱学 红外线的 化学 物理 生物 光学 植物 有机化学 语言学 哲学 量子力学
作者
Sihai Li,Yangyang Wang,Hang Song,Mingqi Liu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:246: 105068-105068 被引量:1
标识
DOI:10.1016/j.chemolab.2024.105068
摘要

Gentiana is rich in Gentiopicroside and strychnine acid with medicinal value. However, the active ingredients of Gentiana from different origins are different, so identifying Gentian's origin is significant. Currently, neural networks such as CNN and GRU are widely used for spectral data analysis, but the modeling effect is easily affected by the spectral preprocessing method, and the long region and many features of spectral data make it difficult for CNN models to capture the long-term dependence of spectra, while GRU modeling has a large number of parameters, high computational complexity, and low efficiency. Therefore, a Gentian Root Data Fusion Module (GL) for sequence data is proposed to achieve the fusion between spectral data under different pre-processing by assigning weights to multiple pre-processing data and all features of pre-processing data respectively, making full use of the advantages of different pre-processing methods. Aiming at the characteristics of the long spectral data region, the joint architecture of convolutional neural network (CNN) and gated neural network (GRU) is adopted to achieve the extraction of features and the capture of long-term dependencies, while reducing the model complexity. Finally, GL is integrated with CNN and GRU to craft the advanced collaborative framework known as CCRN. The experimental findings demonstrate that CCRN outperforms CNN + GRU, CNN, PLS-DA, and SVM in terms of accuracy and loss function performance. Notably, CCRN exhibits superior Accuracy, Recall, and F1-score, surpassing the CNN + GRU model by 2.4 %, 2.1 %, and 2.1 %, respectively. These results validate the efficacy of the GL module in seamlessly integrating various preprocessing methods. In addition, the model CCRN still performs best when tested on public datasets, proving that CCRN has good Portability and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菡菡发布了新的文献求助10
刚刚
隐形曼青应助Wonder罗采纳,获得10
4秒前
hjyylab应助suicone采纳,获得10
4秒前
7秒前
小马甲应助喜悦非笑采纳,获得10
7秒前
zpq发布了新的文献求助10
9秒前
9秒前
无辜的书琴完成签到,获得积分10
13秒前
领导范儿应助小菡菡采纳,获得10
16秒前
隐形曼青应助犹豫书雪采纳,获得10
16秒前
小蘑菇应助小学生库里采纳,获得10
17秒前
xuli21315完成签到 ,获得积分10
20秒前
xxxksk完成签到 ,获得积分10
20秒前
22秒前
小蘑菇应助晚风采纳,获得10
24秒前
bread完成签到,获得积分10
25秒前
蓝色天空完成签到,获得积分10
26秒前
不能说的秘密完成签到,获得积分10
26秒前
ftl发布了新的文献求助10
27秒前
三横一竖发布了新的文献求助10
28秒前
30秒前
所所应助科研通管家采纳,获得10
31秒前
SYLH应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
wanci应助科研通管家采纳,获得10
31秒前
Estrella应助科研通管家采纳,获得10
31秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
SYLH应助科研通管家采纳,获得10
32秒前
hjyylab应助suicone采纳,获得10
32秒前
33秒前
锦七完成签到,获得积分10
33秒前
36秒前
36秒前
ShengQ完成签到,获得积分10
37秒前
38秒前
善学以致用应助ftl采纳,获得10
39秒前
pluto应助Hresearch采纳,获得10
40秒前
可爱的函函应助Hresearch采纳,获得10
40秒前
42秒前
高分求助中
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840562
求助须知:如何正确求助?哪些是违规求助? 3382618
关于积分的说明 10525239
捐赠科研通 3102238
什么是DOI,文献DOI怎么找? 1708728
邀请新用户注册赠送积分活动 822662
科研通“疑难数据库(出版商)”最低求助积分说明 773465