Integrating Visualised Automatic Temporal Relation Graph into Multi-Task Learning for Alzheimer's Disease Progression Prediction

计算机科学 图形 任务(项目管理) 关系(数据库) 人工智能 自然语言处理 数据挖掘 理论计算机科学 管理 经济
作者
Menghui Zhou,Xulong Wang,Tong Liu,Yun Yang,Po Yang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (10): 5206-5220 被引量:15
标识
DOI:10.1109/tkde.2024.3385712
摘要

Alzheimer's disease (AD), the most prevalent dementia, gradually reduces the cognitive abilities of patients while also posing a significant financial burden on the healthcare system. A variety of multi-task learning methods have recently been proposed in order to identify potential MRI-related biomarkers and accurately predict the progression of AD. These methods, however, all use a predefined task relation structure that is rigid and insufficient to adequately capture the intricate temporal relations among tasks. Instead, we propose a novel mechanism for directly and automatically learning the temporal relation and constructing it as an Automatic Temporal relation Graph (AutoTG). We use the sparse group Lasso to select a universal MRI feature set for all tasks and particular sets for various tasks in order to find biomarkers that are useful for predicting the progression of AD. To solve the biconvex and non-smooth objective function, we adopt the alternating optimization and show that the two related sub-optimization problems are amenable to closed-form solution of the proximal operator. To solve the two problems efficiently, the accelerated proximal gradient method is used, which has the fastest convergence rate of any first-order method. We have preprocessed three latest AD datasets, and the experimental results verify our proposed novel multi-task approach outperforms several baseline methods. To demonstrate the high interpretability of our approach, we visualise the automatically learned temporal relation graph and investigate the temporal patterns of the important MRI features. The implementation source can be found at https://github.com/menghui-zhou/MAGPP .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陶醉的梦岚完成签到,获得积分10
1秒前
彭于晏应助冰雪物语采纳,获得10
2秒前
所所应助清风竹舞采纳,获得10
2秒前
2秒前
280完成签到,获得积分10
2秒前
武科完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
FashionBoy应助Ting采纳,获得10
3秒前
M张发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
Isla完成签到,获得积分10
5秒前
深情安青应助去追采纳,获得10
5秒前
tonyfountain发布了新的文献求助10
5秒前
5秒前
ddw发布了新的文献求助10
6秒前
6秒前
何玉斌完成签到,获得积分10
6秒前
6秒前
CanLiu发布了新的文献求助30
6秒前
慕青应助武科采纳,获得10
7秒前
研友_ZbP41L发布了新的文献求助10
7秒前
8秒前
淡然绝山发布了新的文献求助10
8秒前
8秒前
8秒前
王兽医完成签到,获得积分10
9秒前
kazila发布了新的文献求助20
9秒前
bkagyin应助苗条平萱采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
Gloria2022完成签到,获得积分10
10秒前
10秒前
十一发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609