TWilBert: Pre-trained deep bidirectional transformers for Spanish Twitter

计算机科学 自然语言处理 判决 人工智能 变压器 语言模型 情绪分析 词(群论) 连贯性(哲学赌博策略) 语言学 量子力学 物理 哲学 电压
作者
José Ángel González,Lluís-F. Hurtado,Ferrán Pla
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:426: 58-69 被引量:31
标识
DOI:10.1016/j.neucom.2020.09.078
摘要

In recent years, the Natural Language Processing community have been moving from uncontextualized word embeddings towards contextualized word embeddings. Among these contextualized architectures, BERT stands out due to its capacity to compute bidirectional contextualized word representations. However, its competitive performance in English downstream tasks is not obtained by its multilingual version when it is applied to other languages and domains. This is especially true in the case of the Spanish language used in Twitter. In this work, we propose TWiLBERT, a specialization of BERT architecture both for the Spanish language and the Twitter domain. Furthermore, we propose a Reply Order Prediction signal to learn inter-sentence coherence in Twitter conversations, which improves the performance of TWilBERT in text classification tasks that require reasoning on sequences of tweets. We perform an extensive evaluation of TWilBERT models on 14 different text classification tasks, such as irony detection, sentiment analysis, or emotion detection. The results obtained by TWilBERT outperform the state-of-the-art systems and Multilingual BERT. In addition, we carry out a thorough analysis of the TWilBERT models to study the reasons of their competitive behavior. We release the pre-trained TWilBERT models used in this paper, along with a framework for training, evaluating, and fine-tuning TWilBERT models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊白莲发布了新的文献求助10
刚刚
坚定的又莲完成签到 ,获得积分10
1秒前
1秒前
传奇3应助大侦探皮卡丘采纳,获得10
3秒前
3秒前
Hello应助bocai采纳,获得10
4秒前
灿烂千阳发布了新的文献求助50
7秒前
zho应助英俊白莲采纳,获得10
7秒前
顾矜应助我cr采纳,获得10
8秒前
英姑应助姚姚采纳,获得10
9秒前
王希澳完成签到,获得积分10
10秒前
11秒前
Tang完成签到 ,获得积分10
11秒前
姚姚完成签到,获得积分10
14秒前
2799完成签到,获得积分10
15秒前
shenqi完成签到,获得积分20
18秒前
19秒前
无花果应助摩登灰太狼采纳,获得10
19秒前
小白完成签到,获得积分10
20秒前
22秒前
beyonder发布了新的文献求助10
23秒前
开朗满天发布了新的文献求助10
23秒前
甜甜谷雪发布了新的文献求助10
25秒前
25秒前
25秒前
26秒前
科研助手6应助灿烂千阳采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
大模型应助科研通管家采纳,获得10
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得30
29秒前
科研通AI5应助科研通管家采纳,获得30
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
29秒前
情怀应助开朗满天采纳,获得10
29秒前
烟花应助科研通管家采纳,获得20
29秒前
29秒前
小粽子应助科研通管家采纳,获得10
29秒前
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844596
求助须知:如何正确求助?哪些是违规求助? 3386985
关于积分的说明 10547099
捐赠科研通 3107526
什么是DOI,文献DOI怎么找? 1711853
邀请新用户注册赠送积分活动 824208
科研通“疑难数据库(出版商)”最低求助积分说明 774638