亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Machine Learning: Survey, Multi-Level Classification, Desirable Criteria and Future Directions in Communication and Networking Systems

计算机科学 机器学习 原始数据 人工智能 领域(数学) 服务(商务) 数据科学 知识管理 数学 经济 经济 程序设计语言 纯数学
作者
Omar Abdel Wahab,Azzam Mourad,Hadi Otrok,Tarik Taleb
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 1342-1397 被引量:410
标识
DOI:10.1109/comst.2021.3058573
摘要

The communication and networking field is hungry for machine learning decision-making solutions to replace the traditional model-driven approaches that proved to be not rich enough for seizing the ever-growing complexity and heterogeneity of the modern systems in the field. Traditional machine learning solutions assume the existence of (cloud-based) central entities that are in charge of processing the data. Nonetheless, the difficulty of accessing private data, together with the high cost of transmitting raw data to the central entity gave rise to a decentralized machine learning approach called Federated Learning. The main idea of federated learning is to perform an on-device collaborative training of a single machine learning model without having to share the raw training data with any third-party entity. Although few survey articles on federated learning already exist in the literature, the motivation of this survey stems from three essential observations. The first one is the lack of a fine-grained multi-level classification of the federated learning literature, where the existing surveys base their classification on only one criterion or aspect. The second observation is that the existing surveys focus only on some common challenges, but disregard other essential aspects such as reliable client selection, resource management and training service pricing. The third observation is the lack of explicit and straightforward directives for researchers to help them design future federated learning solutions that overcome the state-of-the-art research gaps. To address these points, we first provide a comprehensive tutorial on federated learning and its associated concepts, technologies and learning approaches. We then survey and highlight the applications and future directions of federated learning in the domain of communication and networking. Thereafter, we design a three-level classification scheme that first categorizes the federated learning literature based on the high-level challenge that they tackle. Then, we classify each high-level challenge into a set of specific low-level challenges to foster a better understanding of the topic. Finally, we provide, within each low-level challenge, a fine-grained classification based on the technique used to address this particular challenge. For each category of high-level challenges, we provide a set of desirable criteria and future research directions that are aimed to help the research community design innovative and efficient future solutions. To the best of our knowledge, our survey is the most comprehensive in terms of challenges and techniques it covers and the most fine-grained in terms of the multi-level classification scheme it presents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵三岁发布了新的文献求助20
7秒前
笑醒发布了新的文献求助10
30秒前
CipherSage应助科研通管家采纳,获得10
31秒前
赵三岁完成签到,获得积分10
54秒前
yy完成签到,获得积分10
1分钟前
传奇3应助风中冷风采纳,获得10
1分钟前
xingsixs完成签到 ,获得积分10
2分钟前
小花排草应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
weiling完成签到,获得积分10
2分钟前
搜集达人应助成就的笑翠采纳,获得10
2分钟前
2分钟前
我想静静完成签到 ,获得积分10
2分钟前
2分钟前
xxw完成签到,获得积分10
3分钟前
科研通AI5应助sobereva采纳,获得10
3分钟前
酷波er应助科研通管家采纳,获得10
4分钟前
4分钟前
笑醒完成签到,获得积分10
4分钟前
sobereva发布了新的文献求助10
4分钟前
bellapp完成签到 ,获得积分10
4分钟前
4分钟前
刘刘完成签到 ,获得积分10
5分钟前
6分钟前
三岁完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
科研通AI2S应助冷酷的又亦采纳,获得10
6分钟前
江枫渔火完成签到 ,获得积分10
6分钟前
hank完成签到 ,获得积分10
6分钟前
酷波er应助LFYBing采纳,获得10
6分钟前
研友_892kOL发布了新的文献求助10
7分钟前
彩虹儿应助Wei采纳,获得10
7分钟前
田様应助研友_拓跋戾采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
9分钟前
栗子完成签到,获得积分10
9分钟前
10分钟前
arizaki7发布了新的文献求助10
10分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
探索化学的奥秘:电子结构方法 400
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4172721
求助须知:如何正确求助?哪些是违规求助? 3708266
关于积分的说明 11698000
捐赠科研通 3392834
什么是DOI,文献DOI怎么找? 1861315
邀请新用户注册赠送积分活动 920681
科研通“疑难数据库(出版商)”最低求助积分说明 832833