脂联素
脂肪细胞
小球藻
脂肪组织
脂肪变性
内科学
脂肪肝
内分泌学
脂肪酸
生物
小球藻
生物化学
化学
肥胖
胰岛素抵抗
植物
医学
藻类
疾病
作者
Yang Yang,Shenhan Ge,Qingyan Chen,Shaoling Lin,Shaoxiao Zeng,Bee K. Tan,Jiamiao Hu
标识
DOI:10.1111/1750-3841.16246
摘要
Abstract Chlorella has been identified as a rich source of unsaturated fatty acids. Since the antiobesity effects of unsaturated fatty acids have been well documented; therefore, we explored the antiobesity actions of chlorella unsaturated fatty acids (C.UFAs) in the current study. The obtained results demonstrated C.UFAs, which contain abundant linoleic acid, could retard body weight gain (reducing body weigh by 13.93% after 16 weeks of treatment), improve blood glucose (19.29% lower) and lipid profile (23.45% lower in TG, 8.76% lower in TC) compared to high‐fat diet‐fed C57BL/6J mice. The possible underlying mechanisms might involve reducing hepatic lipid accumulation via down‐regulation of lipogenic genes (PPARγ, C/EBPα, LPL, aP2, FAS, and SREBP‐1c) and up‐regulation of lipolytic gene (adiponectin). We also demonstrate C.UFAs could reduce HFD‐induced adipocyte hypertrophy via activation of AMPK signaling pathway in adipose tissue and liver. In summary, our study highlights the potential of C.UFAs as a functional food for obesity management. Practical Application Chlorella has already been commercialized as a functional food antiobesity function. In the current study, the unsaturated fatty acids isolated from chlorella were found to exert beneficial effects on hyperglycemia, hyperlipidemia, hepatic steatosis, and adipocyte hypertrophy in high‐fat diet‐fed mice. This may provide theoretical foundation for developing novel chlorella‐based functional foods.
科研通智能强力驱动
Strongly Powered by AbleSci AI