A Survey on Shape-Constraint Deep Learning for Medical Image Segmentation

分割 计算机科学 人工智能 深度学习 卷积神经网络 图像分割 像素 一致性(知识库) 机器学习 可视化 医学影像学 模式识别(心理学)
作者
Simon Bohlender,İlkay Öksüz,Anirban Mukhopadhyay
出处
期刊:IEEE Reviews in Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16: 225-240 被引量:12
标识
DOI:10.1109/rbme.2021.3136343
摘要

Since the advent of U-Net, fully convolutional deep neural networks and its many variants have completely changed the modern landscape of deep-learning based medical image segmentation. However, the over-dependence of these methods on pixel-level classification and regression has been identified early on as a problem. Especially when trained on medical databases with sparse available annotation, these methods are prone to generate segmentation artifacts such as fragmented structures, topological inconsistencies and islands of pixel. These artifacts are especially problematic in medical imaging since segmentation is almost always a pre-processing step for some downstream evaluations like surgical planning, visualization, prognosis, or treatment planning. However, one common thread across all these downstream tasks is the demand of anatomical consistency. To ensure the segmentation result is anatomically consistent, approaches based on Markov/ Conditional Random Fields, Statistical Shape Models, Active Contours are becoming increasingly popular over the past 5 years. In this review paper, a broad overview of recent literature on bringing explicit anatomical constraints for medical image segmentation is given, the shortcomings and opportunities are discussed and the potential shift towards implicit shape modelling is elaborated. We review the most relevant papers published until the submission date and provide a tabulated view with method details for quick access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Rheanna采纳,获得10
刚刚
2秒前
困困困发布了新的文献求助10
2秒前
2秒前
徐狗馨完成签到,获得积分10
2秒前
尔蓝红颜完成签到,获得积分10
2秒前
火星上的菲鹰应助地衣采纳,获得10
3秒前
望北楼主发布了新的文献求助10
3秒前
4秒前
Ronnie发布了新的文献求助10
4秒前
4秒前
Hello应助大空翼采纳,获得10
5秒前
6秒前
xinzhuoyang发布了新的文献求助10
6秒前
赘婿应助默默的素阴采纳,获得10
7秒前
隐形曼青应助putongshiming采纳,获得10
7秒前
雨辰完成签到,获得积分10
9秒前
9秒前
斑马发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
chengyi完成签到,获得积分10
13秒前
小宇宙完成签到,获得积分10
15秒前
16秒前
JamesPei应助xinzhuoyang采纳,获得10
16秒前
16秒前
羊羊发布了新的文献求助10
16秒前
小张发布了新的文献求助10
17秒前
Ronnie完成签到,获得积分10
20秒前
20秒前
科研通AI5应助杜杜采纳,获得10
20秒前
大模型应助CYT采纳,获得10
20秒前
JamesPei应助老迟到的可兰采纳,获得10
22秒前
putongshiming发布了新的文献求助10
22秒前
科研通AI5应助烂漫的千萍采纳,获得10
23秒前
23秒前
23秒前
25秒前
科研通AI5应助羊羊采纳,获得10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818405
求助须知:如何正确求助?哪些是违规求助? 3361530
关于积分的说明 10413272
捐赠科研通 3079791
什么是DOI,文献DOI怎么找? 1693005
邀请新用户注册赠送积分活动 814546
科研通“疑难数据库(出版商)”最低求助积分说明 768193