Improvement of the predictive performance of landslide mapping models in mountainous terrains using cluster sampling

山崩 地形 随机森林 采样(信号处理) 地图学 地理 简单随机抽样 朴素贝叶斯分类器 逻辑回归 遥感 人口 统计 整群抽样 地质学 计算机科学 环境科学 支持向量机 地貌学 数学 人工智能 人口学 滤波器(信号处理) 社会学 计算机视觉
作者
Muhammad Tayyib Riaz,Muhammad Basharat,Quoc Bao Pham,Yasir Sarfraz,Amir Shahzad,Khawaja Shoaib Ahmed,Nawaz Ikram,Muhammad Waseem
出处
期刊:Geocarto International [Taylor & Francis]
卷期号:37 (26): 12294-12337 被引量:13
标识
DOI:10.1080/10106049.2022.2066202
摘要

Landslide predictive performance is expected to vary with different sampling techniques, such as landslide random and cluster sampling. Current advancements in remote sensing technologies and machine learning (ML) have enhanced landslide prediction performance. The Himalayan Mountain range in Pakistan poses an unadorned threat to the ecosystem and valley population because of landslide occurrence. The present study explores, and tests alternative sampling technique based on spatial pattern characterization in the wake of increased landslide prediction efficacy, rather than a renowned random technique for training and testing sampling. Thereupon, landslide inventory data with 17 geo-environmental factors (i.e. topographic, hydrological and seismic factors) were determined. Landslide cluster patterns were confirmed by the Nearest Neighbor Index (NNI) method and after getting the cluster patterns, the predicted performance of landslide sampling was tested using ML and statistical methods. Advanced ML algorithms including Random Forest (RF), Extreme Gradient Boosting (XGBoost), Naive Bayes (NB), K-nearest Neighbors (KNN) and statistical methods including Weight-of-Evidence (WofE) and Logistic Regression (LR) were used and validated. The landslide-prone district of Azad Jammu and Kashmir (Neelum Valley), Kashmir Himalayas, Pakistan, was selected as a case study. Prediction performance rates are high with area under the curve (AUC) ranging from 0.802 to 0.912; accuracy (ACC) ranges from 0.78 to 0.89, and kappa ranges from 0.50 to 0.68 with cluster sampling technique, whereas the performance was low with random sampling technique, with AUC ranges from 0.768 to 0.895; ACC ranges from 0.74 to 0.86 and kappa ranges from 0.48 to 0.64. The descending order of accuracy of the six algorithms was XGboost, RF, KNN, NB, LR and WofE. Our results confirmed that the landslides followed cluster patterns in the study area, and ML algorithms with cluster training samples positively affected landslide susceptibility prediction with a statistically significant difference. The outcomes support the hypothesis that using landslides spatial natural existence, as training samples, instead of random concepts, improves the prediction ability; and highlights that alternative landslide partitioning technique could be a practicable and robust choice for landslides prediction modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊博士完成签到 ,获得积分10
3秒前
17完成签到 ,获得积分10
6秒前
wtzhang16完成签到 ,获得积分10
10秒前
清脆初晴完成签到,获得积分10
11秒前
kanong完成签到,获得积分0
18秒前
Wanyeweiyu完成签到,获得积分10
19秒前
zhilianghui0807完成签到 ,获得积分10
26秒前
落叶捎来讯息完成签到 ,获得积分10
27秒前
28秒前
Orange应助科研通管家采纳,获得10
30秒前
牛八先生完成签到,获得积分10
34秒前
张先生完成签到 ,获得积分10
48秒前
HeLL0完成签到 ,获得积分10
57秒前
小黄人完成签到 ,获得积分10
1分钟前
小马甲应助安静成威采纳,获得10
1分钟前
1分钟前
licheng完成签到,获得积分10
1分钟前
1分钟前
tmobiusx完成签到,获得积分10
1分钟前
安静成威发布了新的文献求助10
1分钟前
jyy应助tdtk采纳,获得10
1分钟前
Lq完成签到 ,获得积分10
1分钟前
badbaby完成签到 ,获得积分10
1分钟前
jyy应助tdtk采纳,获得10
1分钟前
满意涵梅完成签到 ,获得积分10
1分钟前
vippp完成签到 ,获得积分10
1分钟前
1分钟前
安静成威完成签到,获得积分10
1分钟前
Karry完成签到 ,获得积分10
1分钟前
涛1完成签到 ,获得积分10
2分钟前
奔跑西木完成签到 ,获得积分10
2分钟前
xue112完成签到 ,获得积分10
2分钟前
漂亮的秋天完成签到 ,获得积分10
2分钟前
2分钟前
黑子完成签到 ,获得积分10
2分钟前
4652376完成签到 ,获得积分10
2分钟前
zhaoyaoshi完成签到 ,获得积分10
2分钟前
逢场作戱__完成签到 ,获得积分10
2分钟前
科研狗的春天完成签到 ,获得积分10
2分钟前
吃小孩的妖怪完成签到 ,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782723
求助须知:如何正确求助?哪些是违规求助? 3328095
关于积分的说明 10234458
捐赠科研通 3043084
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994