Using the inverse finite‐element method to harmonise classical modal analysis with fibre‐optic strain data for robust population‐based structural health monitoring

结构健康监测 有限元法 激光扫描测振法 灵敏度(控制系统) 应变计 流离失所(心理学) 情态动词 结构工程 人口 加速度计 激光多普勒测振仪 振动 模态分析 工程类 计算机科学 声学 电子工程 材料科学 光学 激光器 心理治疗师 操作系统 高分子化学 人口学 社会学 物理 分布反馈激光器 心理学
作者
Giulia Delo,Rinto Roy,Keith Worden,Cecilia Surace
出处
期刊:Strain [Wiley]
卷期号:61 (1) 被引量:7
标识
DOI:10.1111/str.12481
摘要

Abstract Vibration‐based approaches to structural health monitoring (SHM) gained increasing significance for assessing the behaviour of existing structures because of their non‐intrusive nature and high sensitivity to damage. However, data availability often limits the application of SHM approaches. The population‐based structural health monitoring (PBSHM) theory addresses this challenge, enhancing diagnostic inferences by sharing knowledge across a population of similar structures. In real‐life scenarios, sharing data from distinct structures requires dealing with results obtained with different experimental setups, multiple sensors, input choices and acquisition systems. Therefore, it is crucial to harmonise various features to achieve accurate and reliable results. The present study presents the results of a classic experimental modal analysis (EMA) using scanning laser Doppler vibrometer (SLDV) measurements and a strain‐based EMA conducted using high‐definition distributed fibre‐optic strain sensors. The experimental case study of a laboratory‐scale steel aircraft subjected to specific operating and damage conditions is introduced, allowing for a comprehensive discussion of the features extracted from the two EMA techniques, which can also be generalised to structures within different domains. This research highlights the advantages and limitations of fibre‐optic‐based EMA compared to classic methods, as fibre‐optic strain sensors offer a cost‐effective alternative to accelerometers or SLDV for dynamic testing. Furthermore, the feasibility of employing the inverse finite‐element method (iFEM) in the dynamic domain is investigated. This method can estimate the whole displacement field of a structure from a limited number of strain values, thus harmonising strain measurements with the SLDV measurements. By analysing the features extracted from different EMA techniques within the PBSHM framework, this study contributes to advancing the understanding and application of the PBSHM approach in diverse experimental scenarios, laying the foundation for further investigation of features and adequate methods for sharing damage‐state knowledge across a population of structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助cun采纳,获得10
刚刚
瘦瘦的烤鸡完成签到,获得积分10
1秒前
聂青枫完成签到,获得积分0
1秒前
ZZ完成签到,获得积分10
2秒前
谦让晓晓发布了新的文献求助10
2秒前
饿哭了塞完成签到 ,获得积分10
2秒前
Lqian_Yu完成签到 ,获得积分10
3秒前
孙温柔完成签到,获得积分10
4秒前
文艺的鬼神完成签到,获得积分10
4秒前
5秒前
多多发布了新的文献求助10
5秒前
5秒前
FashionBoy应助外向的静竹采纳,获得10
6秒前
我是老大应助外向的静竹采纳,获得10
6秒前
6秒前
动听的念文完成签到 ,获得积分10
7秒前
Blessing完成签到 ,获得积分10
7秒前
让我再眯一会儿完成签到 ,获得积分10
7秒前
qianhuxinyu完成签到,获得积分10
7秒前
7秒前
7秒前
vv完成签到,获得积分10
8秒前
8秒前
AN关闭了AN文献求助
8秒前
8秒前
宝铭YUAN完成签到,获得积分10
8秒前
执玉笛完成签到,获得积分10
9秒前
深情的安柏完成签到,获得积分10
9秒前
无奈的天玉完成签到,获得积分10
9秒前
Eason完成签到,获得积分10
9秒前
10秒前
10秒前
乐空思应助Erdong_chen采纳,获得20
11秒前
一期一会发布了新的文献求助10
11秒前
猪头发布了新的文献求助10
11秒前
无极微光应助失眠班采纳,获得20
11秒前
11秒前
开朗的早晨完成签到,获得积分10
12秒前
12秒前
Rauf发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708191
求助须知:如何正确求助?哪些是违规求助? 5187368
关于积分的说明 15252886
捐赠科研通 4861233
什么是DOI,文献DOI怎么找? 2609314
邀请新用户注册赠送积分活动 1559937
关于科研通互助平台的介绍 1517716