IoMT-based smart healthcare detection system driven by quantum blockchain and quantum neural network

计算机科学 量子计算机 散列函数 卷积神经网络 量子网络 量子 稳健性(进化) 计算机安全 理论计算机科学 计算机网络 算法 人工智能 物理 量子力学 基因 生物化学 化学
作者
Zhiguo Qu,Wenke Shi,Bo Liu,Deepak Gupta,Prayag Tiwari
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:24
标识
DOI:10.1109/jbhi.2023.3288199
摘要

Electrocardiogram (ECG) is the main criterion for arrhythmia detection. As a means of identification, ECG leakage seems to be a common occurrence due to the development of the Internet of Medical Things. The advent of the quantum era makes it difficult for classical blockchain technology to provide security for ECG data storage. Therefore, from the perspective of safety and practicality, this article proposes a quantum arrhythmia detection system called QADS, which achieves secure storage and sharing of ECG data based on quantum blockchain technology. Furthermore, a quantum neural network is used in QADS to recognize abnormal ECG data, which contributes to further cardiovascular disease diagnosis. Each quantum block stores the hash of the current and previous block to construct a quantum block network. The new quantum blockchain algorithm introduces a controlled quantum walk hash function and a quantum authentication protocol to guarantee legitimacy and security while creating new blocks. In addition, this article constructs a hybrid quantum convolutional neural network called HQCNN to extract the temporal features of ECG to detect abnormal heartbeats. The simulation experimental results show that HQCNN achieves an average training and testing accuracy of 94.7% and 93.6%. And the detection stability is much higher than classical CNN with the same structure. HQCNN also has certain robustness under the perturbation of quantum noise. Besides, this article demonstrates through mathematical analysis that the proposed quantum blockchain algorithm has strong security and can effectively resist various quantum attacks, such as external attacks, Entanglement-Measure attack and Interception-Measurement-Repeat attack.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
广州城建职业技术学院完成签到,获得积分10
刚刚
非而者厚应助Domo采纳,获得10
刚刚
刚刚
张张发布了新的文献求助10
1秒前
圈圈完成签到,获得积分10
1秒前
1秒前
jsw发布了新的文献求助10
1秒前
wendinfgmei发布了新的文献求助10
1秒前
冬瓜完成签到 ,获得积分10
1秒前
本微尘完成签到,获得积分10
3秒前
科研通AI5应助大佬采纳,获得10
5秒前
Jasper应助大佬采纳,获得10
5秒前
5秒前
等待的灵安完成签到,获得积分10
5秒前
星辰大海应助那地方采纳,获得10
6秒前
6秒前
香蕉觅云应助Chen采纳,获得30
8秒前
鲤角兽完成签到,获得积分10
9秒前
不倒翁37完成签到,获得积分10
9秒前
木子发布了新的文献求助10
10秒前
英俊未来发布了新的文献求助20
10秒前
上官若男应助ruqayyah采纳,获得10
11秒前
14秒前
wanci应助zcy采纳,获得10
15秒前
阳光代丝完成签到 ,获得积分10
18秒前
非而者厚应助寒冷银耳汤采纳,获得10
20秒前
非而者厚应助寒冷银耳汤采纳,获得10
20秒前
香蕉觅云应助寒冷银耳汤采纳,获得10
20秒前
丫丫发布了新的文献求助10
21秒前
22秒前
24秒前
24秒前
25秒前
英俊未来完成签到,获得积分10
26秒前
26秒前
27秒前
zcy发布了新的文献求助10
27秒前
27秒前
苹果映菱发布了新的文献求助10
28秒前
cqhecq完成签到,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353628
关于积分的说明 10366242
捐赠科研通 3069900
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320