Artificial intelligence for diabetic retinopathy detection: A systematic review

步伐 人工智能 计算机科学 糖尿病性视网膜病变 机器学习 鉴定(生物学) 阶段(地层学) 医学 糖尿病 地理 内分泌学 大地测量学 植物 生物 古生物学
作者
Archana Senapati,Hrudaya Kumar Tripathy,Vandana Sharma,Amir H. Gandomi
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:45: 101445-101445 被引量:50
标识
DOI:10.1016/j.imu.2024.101445
摘要

The incidence of diabetic retinopathy (DR) has increased at a rapid pace in recent years all over the world. Diabetic eye illness is identified as one of the most common reasons for vision loss among people. To properly manage DR, there has been immense research and exploration of state-of-the-art methods using artificial intelligence (AI) enabled models. Specifically, AI-empowered models combine multiple machine learning (ML) and deep learning (DL) based algorithms to improve the performance of the developed system architectures that are commercially utilized for the detection of DR disease. However, these models still exhibit several limitations, such as computational complexity, low accuracy in DR stage detection due to class imbalance, more time consumption, and high maintenance cost. To overcome these limits, a more advanced model is required to accurately predict the DR stage in the initial stages. For example, the identification of DR disease in the initial stage helps the ophthalmologist to make an accurate and safe diagnosis, and thereby, eyesight-related issues may be treated more effectively. This study conducted a systematic literature review (SLR) to provide a detailed discussion of the background of diabetic retinopathy, its major causes, challenges faced by ophthalmologists in DR detection, and possible solutions for identifying DR in the initial stage. Also, the SLR provides an in-depth analysis of the existing state-of-the-art techniques and system models used in DR diagnosis based on AI, ML, and recently developed DL-based approaches. Furthermore, this present survey would be helpful for the research community to receive information on the recent approaches used for DR identification along with their significant challenges and limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦杰发布了新的文献求助10
1秒前
2秒前
顺心的星星完成签到,获得积分10
2秒前
852应助谢大喵采纳,获得10
2秒前
淑儿哥哥发布了新的文献求助10
3秒前
3秒前
3秒前
思源应助10711采纳,获得10
4秒前
贪玩的秋柔给rui的求助进行了留言
4秒前
5秒前
文光关注了科研通微信公众号
7秒前
7秒前
十分喜欢发布了新的文献求助10
10秒前
小二郎应助王机智采纳,获得10
10秒前
传奇3应助谢大喵采纳,获得10
11秒前
13秒前
丰盛的煎饼完成签到,获得积分0
13秒前
平淡的井完成签到 ,获得积分10
13秒前
14秒前
River完成签到,获得积分10
15秒前
17秒前
treasure完成签到,获得积分10
18秒前
星业辰发布了新的文献求助10
18秒前
我是老大应助谢大喵采纳,获得30
18秒前
sunshine发布了新的文献求助10
19秒前
英俊的铭应助_Charmo采纳,获得10
20秒前
天才小能喵完成签到 ,获得积分0
20秒前
Jing发布了新的文献求助10
20秒前
Mikey发布了新的文献求助10
21秒前
YUAN完成签到,获得积分10
21秒前
JamesPei应助于富强采纳,获得10
21秒前
tina199689发布了新的文献求助10
22秒前
asdfzxcv应助Xhnz采纳,获得10
23秒前
慕青应助锦慜采纳,获得10
28秒前
善学以致用应助sunset采纳,获得10
29秒前
科研通AI2S应助李卓航采纳,获得10
30秒前
wsh完成签到 ,获得积分10
31秒前
zyeel完成签到,获得积分10
31秒前
32秒前
852应助ff采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637884
求助须知:如何正确求助?哪些是违规求助? 4744268
关于积分的说明 15000613
捐赠科研通 4796097
什么是DOI,文献DOI怎么找? 2562306
邀请新用户注册赠送积分活动 1521844
关于科研通互助平台的介绍 1481714