亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Based on ResNet-18 for Classification of Prostate Imaging-Reporting and Data System Category 3 Lesions

残差神经网络 人工智能 前列腺 深度学习 计算机科学 医学 模式识别(心理学) 内科学 癌症
作者
Zhen Kang,Enhua Xiao,Zhen Li,Liang Wang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (6): 2412-2423 被引量:25
标识
DOI:10.1016/j.acra.2023.12.042
摘要

Rationale and Objectives

To explore the classification and prediction efficacy of the deep learning model for benign prostate lesions, non-clinically significant prostate cancer (non-csPCa) and clinically significant prostate cancer (csPCa) in Prostate Imaging-Reporting and Data System (PI-RADS) 3 lesions.

Materials and Methods

From January 2015 to December 2021, lesions diagnosed with PI-RADS 3 by multi-parametric MRI or bi-parametric MRI were retrospectively included. They were classified as benign prostate lesions, non-csPCa, and csPCa according to the pathological results. T2-weighted images of the lesions were divided into a training set and a test set according to 8:2. ResNet-18 was used for model training. All statistical analyses were performed using Python open-source libraries. The receiver operating characteristic curve (ROC) was used to evaluate the predictive effectiveness of the model. T-SNE was used for image semantic feature visualization. The class activation mapping was used to visualize the area focused by the model.

Results

A total of 428 benign prostate lesion images, 158 non-csPCa images and 273 csPCa images were included. The precision in predicting benign prostate disease, non-csPCa and csPCa were 0.882, 0.681 and 0.851, and the area under the ROC were 0.875, 0.89 and 0.929, respectively. Semantic feature analysis showed strong classification separability between csPCa and benign prostate lesions. The class activation map showed that the deep learning model can focus on the area of the prostate or the location of PI-RADS 3 lesions.

Conclusion

Deep learning model with T2-weighted images based on ResNet-18 can realize accurate classification of PI-RADS 3 lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NI完成签到 ,获得积分10
3秒前
5秒前
赘婿应助悦耳青梦采纳,获得10
9秒前
科研通AI6.1应助我不吃葱采纳,获得10
10秒前
科研通AI6.1应助小年小少采纳,获得20
19秒前
炙热成仁完成签到,获得积分10
20秒前
希希完成签到 ,获得积分10
21秒前
Joy关注了科研通微信公众号
27秒前
Hello应助沉默的倔驴采纳,获得10
31秒前
奶奶的龙应助科研通管家采纳,获得10
32秒前
奶奶的龙应助科研通管家采纳,获得10
32秒前
null应助科研通管家采纳,获得10
32秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
在水一方应助科研通管家采纳,获得10
32秒前
奶奶的龙应助科研通管家采纳,获得10
32秒前
李健应助科研通管家采纳,获得10
32秒前
可爱邓邓完成签到 ,获得积分10
32秒前
42秒前
43秒前
爱飞的乌龟完成签到,获得积分10
44秒前
47秒前
Joy发布了新的文献求助30
49秒前
52秒前
54秒前
Mark_He发布了新的文献求助10
58秒前
dph完成签到 ,获得积分10
1分钟前
1分钟前
orixero应助沉默的倔驴采纳,获得10
1分钟前
1分钟前
1分钟前
zhongzihao发布了新的文献求助10
1分钟前
彭于晏应助完美迎梦采纳,获得10
1分钟前
君子兰发布了新的文献求助10
1分钟前
李健应助dph采纳,获得20
1分钟前
丘比特应助头顶花盆降碳采纳,获得10
1分钟前
1分钟前
1分钟前
甜菜完成签到,获得积分10
1分钟前
共享精神应助沉默的倔驴采纳,获得10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510