Deep Learning Based on ResNet-18 for Classification of Prostate Imaging-Reporting and Data System Category 3 Lesions

残差神经网络 人工智能 前列腺 深度学习 计算机科学 医学 模式识别(心理学) 内科学 癌症
作者
Zhen Kang,Enhua Xiao,Zhen Li,Liang Wang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (6): 2412-2423 被引量:24
标识
DOI:10.1016/j.acra.2023.12.042
摘要

Rationale and Objectives

To explore the classification and prediction efficacy of the deep learning model for benign prostate lesions, non-clinically significant prostate cancer (non-csPCa) and clinically significant prostate cancer (csPCa) in Prostate Imaging-Reporting and Data System (PI-RADS) 3 lesions.

Materials and Methods

From January 2015 to December 2021, lesions diagnosed with PI-RADS 3 by multi-parametric MRI or bi-parametric MRI were retrospectively included. They were classified as benign prostate lesions, non-csPCa, and csPCa according to the pathological results. T2-weighted images of the lesions were divided into a training set and a test set according to 8:2. ResNet-18 was used for model training. All statistical analyses were performed using Python open-source libraries. The receiver operating characteristic curve (ROC) was used to evaluate the predictive effectiveness of the model. T-SNE was used for image semantic feature visualization. The class activation mapping was used to visualize the area focused by the model.

Results

A total of 428 benign prostate lesion images, 158 non-csPCa images and 273 csPCa images were included. The precision in predicting benign prostate disease, non-csPCa and csPCa were 0.882, 0.681 and 0.851, and the area under the ROC were 0.875, 0.89 and 0.929, respectively. Semantic feature analysis showed strong classification separability between csPCa and benign prostate lesions. The class activation map showed that the deep learning model can focus on the area of the prostate or the location of PI-RADS 3 lesions.

Conclusion

Deep learning model with T2-weighted images based on ResNet-18 can realize accurate classification of PI-RADS 3 lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
干净冰露应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
xuan应助糊涂的万采纳,获得10
1秒前
Green完成签到,获得积分10
2秒前
2秒前
yyyyyggggg完成签到,获得积分10
2秒前
JPEI完成签到,获得积分10
2秒前
chenzq发布了新的文献求助20
2秒前
long4jun3发布了新的文献求助10
3秒前
风趣的飞荷完成签到,获得积分10
3秒前
4秒前
XIN完成签到,获得积分20
4秒前
4秒前
xiiiiinYi发布了新的文献求助10
4秒前
北海发布了新的文献求助10
4秒前
4秒前
Syo发布了新的文献求助10
5秒前
郭素玲发布了新的文献求助10
5秒前
5秒前
5秒前
开朗龙猫发布了新的文献求助10
5秒前
桐桐应助帅气抽屉采纳,获得30
5秒前
搞笑羽球人完成签到,获得积分10
6秒前
Robby完成签到 ,获得积分10
6秒前
7秒前
XIN发布了新的文献求助10
7秒前
8秒前
无问西东完成签到,获得积分10
8秒前
8秒前
Bein完成签到 ,获得积分10
9秒前
9秒前
NexusExplorer应助大鱼采纳,获得10
9秒前
9秒前
9秒前
NexusExplorer应助Tuzixiong采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477903
求助须知:如何正确求助?哪些是违规求助? 4579712
关于积分的说明 14370069
捐赠科研通 4507919
什么是DOI,文献DOI怎么找? 2470291
邀请新用户注册赠送积分活动 1457179
关于科研通互助平台的介绍 1431135