Deep Learning Based on ResNet-18 for Classification of Prostate Imaging-Reporting and Data System Category 3 Lesions

残差神经网络 人工智能 前列腺 深度学习 计算机科学 医学 模式识别(心理学) 内科学 癌症
作者
Zhen Kang,Enhua Xiao,Zhen Li,Liang Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (6): 2412-2423 被引量:9
标识
DOI:10.1016/j.acra.2023.12.042
摘要

Rationale and Objectives

To explore the classification and prediction efficacy of the deep learning model for benign prostate lesions, non-clinically significant prostate cancer (non-csPCa) and clinically significant prostate cancer (csPCa) in Prostate Imaging-Reporting and Data System (PI-RADS) 3 lesions.

Materials and Methods

From January 2015 to December 2021, lesions diagnosed with PI-RADS 3 by multi-parametric MRI or bi-parametric MRI were retrospectively included. They were classified as benign prostate lesions, non-csPCa, and csPCa according to the pathological results. T2-weighted images of the lesions were divided into a training set and a test set according to 8:2. ResNet-18 was used for model training. All statistical analyses were performed using Python open-source libraries. The receiver operating characteristic curve (ROC) was used to evaluate the predictive effectiveness of the model. T-SNE was used for image semantic feature visualization. The class activation mapping was used to visualize the area focused by the model.

Results

A total of 428 benign prostate lesion images, 158 non-csPCa images and 273 csPCa images were included. The precision in predicting benign prostate disease, non-csPCa and csPCa were 0.882, 0.681 and 0.851, and the area under the ROC were 0.875, 0.89 and 0.929, respectively. Semantic feature analysis showed strong classification separability between csPCa and benign prostate lesions. The class activation map showed that the deep learning model can focus on the area of the prostate or the location of PI-RADS 3 lesions.

Conclusion

Deep learning model with T2-weighted images based on ResNet-18 can realize accurate classification of PI-RADS 3 lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sophie完成签到,获得积分10
刚刚
哈哈发布了新的文献求助30
1秒前
终生科研徒刑完成签到 ,获得积分10
1秒前
1秒前
韩涵发布了新的文献求助10
1秒前
NexusExplorer应助长亭采纳,获得20
1秒前
1秒前
Cherry发布了新的文献求助10
1秒前
小科比发布了新的文献求助10
2秒前
愉快的哈密瓜完成签到,获得积分10
2秒前
2秒前
lancerimpp完成签到,获得积分10
3秒前
jd发布了新的文献求助10
3秒前
七月不看海完成签到,获得积分10
3秒前
4秒前
4秒前
dingz完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
7秒前
7秒前
7秒前
8秒前
环秋发布了新的文献求助10
8秒前
梓辰完成签到,获得积分10
8秒前
敏感的靳发布了新的文献求助10
8秒前
zhouzhou完成签到,获得积分10
9秒前
机灵的鸣凤完成签到,获得积分10
9秒前
甜美坤完成签到 ,获得积分10
10秒前
10秒前
zzbbk发布了新的文献求助10
10秒前
Lucas应助1111采纳,获得10
10秒前
JUYIN完成签到,获得积分10
11秒前
无花果应助lc采纳,获得10
11秒前
coco发布了新的文献求助10
12秒前
安静的幻竹完成签到,获得积分10
12秒前
conanyangqun发布了新的文献求助10
12秒前
12秒前
why发布了新的文献求助10
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841327
求助须知:如何正确求助?哪些是违规求助? 3383394
关于积分的说明 10529546
捐赠科研通 3103500
什么是DOI,文献DOI怎么找? 1709307
邀请新用户注册赠送积分活动 823049
科研通“疑难数据库(出版商)”最低求助积分说明 773806